1. Trang chủ
  2. » Giáo án - Bài giảng

PT,BPT,HPT mũ & lôgarit (hay) - Nguyễn Thành Long

180 602 6

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 180
Dung lượng 3,38 MB

Nội dung

Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Email: Loinguyen1310@gmail.com (DÙNG CHO ÔN THI TN – CĐ – ĐH 2011) Gửi tặng: www.Vnmath.com Bỉm sơn 15.04.2011 www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ MŨ - LÔGARIT CHƯƠNG I: PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ MŨ CHỦ ĐỀ I: PHƯƠNG TRÌNH MŨ BÀI TỐN 1: SỬ DỤNG PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG I Phương pháp: Ta sử dụng phép biến đổi tương đương sau: Dạng 1: Phương trình a f  x   a g  x  TH 1: Khi a số thỏa mãn  a  a f  x   a g  x   f  x   g  x  TH 2: Khi a hàm x a f  x a g x a  a        0  a   a  1  f  x   g  x        f  x   g  x     Dạng 2: Phương trình: 0  a  1, b   a f  x  b    f  x   log a b  Đặc biệt: Khi b  0, b  kết luận phương trình vơ nghiệm Khi b  ta viết b  a  a f  x   a  f  x   Khi b  mà b biếu diễn thành b  a c  a f  x   a c  f  x   c Chú ý: Trước biến đổi tương đương f  x  g  x  phải có nghĩa II Bài tập áp dụng: Loại 1: Cơ số số Bài 1: Giải phương trình sau x 1 a x 1 1 x  16 x 1 b   3 x 3 x 1 3 c x 1  x   36 Giải: a PT  x 1 x 2 33 x  24 x  x   x  x  www.VNMATH.com www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 1 b   3 x  x 1   3 ( x  x 1)  31   ( x  3x  1)  x   x  3x     x  2x 8.2 x  x  36   36 c   36  2.2  4  9.2 x  36.4  2x  16  24  x  Bài 2: Giải phương trình x 1 x 2 a 0,125.4 x 3 x  2       x b x 1 x 1  0, 25  2 7x c x  2.5 x  23 x.53 x Giải:  22  2         5   2  2    b Điều kiện x  1 x x x 3 Pt   22  3 2(2 x 3) PT  2 x 1 x 1 c Pt   2.5  2 x2 7x 2 5 x x  3  x   2  x   2  x   x x6  x 1 x 1 x 3    x  9x     x  x 1    2.5 3x  10 x   103 x  x   3x  x  Bài 2: Giải phương trình:  x  2  x     2  log3 x  x2 Giải: Phương trình cho tương đương:  x2 0 x   x     log3 x log3 x   1    1   ln  x     log3 x ln  x    0 1    x      2 2  2      x    x   x    x  x  x        log x   x   x           x2   ln  x     x    x      2 2       x   x  x     www.VNMATH.com www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Bài 3: Giải phương trình: a  10   x 3 x 1   10   x 1 x 3  b  2     x 3  x    x 1 4 Giải: x  a Điều kiện:   x  3 Vì 10   10  3 x x 1 x 1 x 3  x x 1    x2  x   x   x 1 x  Vậy nghiệm phương trình cho x   x  b Điều kiện:  x  2 x  3 2 2 x  x 1 4 PT  x 1 x 3 x  x 1   x 1.2 PT   10     2  x 2   10       x 3    x 1 x x 1           4  x 3  x 2 x 1    x 3 x    2 x 1  x   x  10 x    x 3 x9 Vậy phương trình có nghiệm x  Loại 2: Khi số hàm x Bài 1: Giải phương trình   x  x  sin    x  x2   cos x Giải: Phương trình biến đổi dạng: 1  x  2(*) 2  x  x       x  x   0(1)    x  x  sin x   cos x      sin x  cos x  2(2)    1 thoả mãn điều kiện (*)      Giải (2): sin x  cos x   sin x  x     x    2k  x   2k , k  Z 2 3  Để nghiệm thoả mãn điều kiện (*) ta phải có: Giải (1) ta x1,2  www.VNMATH.com www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498        2k    1    k      k  0, k  Z ta nhận x3  2  6 2  6  1 Vậy phương trình có nghiệm phân biệt x1,2  ; x3  1  x 5 x  Bài 2: Giải phương trình:  x  3   x2  x   x2  x 4 Giải: x 5 x  Phương trình biến đổi dạng:  x  3   x  3    x2  x 4   x  3 2( x  x  4) x  1 x  x      0  x     x    x   3 x  x   x  x    x  x  10    Vậy phương trình có nghiệm phân biệt x = 4, x = Bài tập tự giải có hướng dẫn: Bài 1: Giải phương trình sau a 4.9 x 1  3.2 x 1 x  b 7.3x 1  x   3x 4  x 3 x x x 4   c  27   37     HD: x 3   a   1 x    2  b   x 1 5 x 1 3   5 d  x  1 x 1   x  1 x 1 x 1   x  1 c x  10 BÀI TỐN 2: SỬ DỤNG PHƯƠNG PHÁP LƠGARIT HỐ VÀ ĐƯA VỀ CÙNG CƠ SỐ I Phương pháp: Để chuyển ẩn số khỏi số mũ luỹ thừa người ta logarit theo số vế phương trình, ta có dạng: Dạng 1: Phương trình:  0  a  1, b  a f  x  b    f  x   log a b  Dạng 2: Phương trình: (cơ số khác số mũ khác nhau) f x a    b g ( x )  log a a f ( x )  log a b f ( x )  f ( x )  g ( x).log a b www.VNMATH.com www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 log b a f ( x )  logb b g ( x )  f ( x ).log b a  g ( x) Đặc biệt: (cơ số khác số mũ nhau) f  x a a f  x f (x) Khi f  x   g  x   a b        f  x   (vì b f ( x )  ) b b Chú ý: Phương pháp áp dụng phương trình có dạng tích – thương hàm mũ II Bài tập áp dụng: Bài 1: Giải phương trình a (ĐH KTQD – 1998) x.8 x 1 x b 3x  2.4  500 c x  4.5x   d x 2 x x 3 x   18 Giải: a Cách 1: Viết lại phương trình dạng: x.8 x 1  500  5x.2 x 1 x  53.22  5x 3.2 x 3 x 1 Lấy logarit số vế, ta được:  x 3 x 3   x 3  x 3 x 3 x log     log    log  x     x  3 log  log 2  x     x  1     x    log     x   x  log   Vậy phương trình có nghiệm phân biệt: x  3; x   log x  1   5.2 x    x 3 Cách 2: PT  5 x 3      2x     3( x 1) x   x 3 x 3 2 3 x x 5 x 3  1   2 x    x 3 x   x   1   x  x   log5 5.2   x2  2 xx3  b Ta có  18  log3    log 18   4x  3( x  2)  x2   log3   log   x    log  x x x     x    x  x  3log     x2  x  x  3log  (VN ) x2  2 x 3 x c PT  log 2 x 4  log 52  x  www.VNMATH.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.VNMATH.com Email: Loinguyen1310@gmail.com  x    x   log    x   x   log 5  x  x     x   log   x  2  log d Lấy logarit số hai vế phương trình ta được: log 2 x  x  log  x  x  log   x  x   log  , Ta có     log  log  suy phương trình có nghiệm x =  log Chú ý: Đối với phương trình cần thiết rút gọn trước logarit hố Bài 2: Giải phương trình a c x x2 b x  3x    4.34  x log ,5 (sin x  sin x cos x  )  x  22 x 1 d x  x 1  x   3x  3x 3  3x 1 Giải: a Điều kiện x  2 PT  3x 2 x2  34  x    3x   (4  x ) log   x     log   x2  x2  x  4 x      log   x    log x2  b 1 x x x x x 1 x 2 PT    3   2 3 x x  3  x  0 x 0 2 c Điều kiện sin x  5sin x.cos x   * PT  log 21  sin x  5sin x.cos x    log 32   log  sin x  5sin x.cos x     log thỏa mãn (*) cos x   sin x  5sin x.cos x    cos x  5sin x  cos x     5sin x  cos x       x   k  x   k     tan x   tan   x    l   d PT www.VNMATH.com www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498  x  5.5 x  25.5x  3x  27.3x  3.3x x 5  31.5 x  31.3x      x  3 Vậy nghiệm phương trình cho x  Bài 3: Giải phương trình a x lg x  1000 x b x log  x    32 x c 7log 25  x  1  x log Giải: a Điều kiện x  d 3x.8 x1  36  lg x.lg x  lg1000  lg x   lg x   lg x    lg x    x  / 10   lg x  1 lg x  3     lg x    x  1000 b Điều kiện x  PT  log x log2  x  4  log 32  log x   log x    log x  1  log x  5   x2 log x    x  log x   32  c Điều kiện x     log5 log25 5 x 1  log x log5   log 25  x   1 log5  log 7.log x   log5 x  1  log5  x   log x    log5 x  log x      log5 x   x    x  125  x  Vậy phương trình cho có nghiệm   x  125 d Điều kiện x  1 x x 1 3x   log x 1  x log    log 3 x   x  1   x  1 log x  log  log 36   2log  x.log  x   x log  1  log 3 x   2log     x  1  log x  Vậy phương trình có nghiệm là:   x  1  log Bài 4: Giải phương trình sau : a x.5 x 1  b 3x 91 x  27 x c x x  www.VNMATH.com d x x  10 www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Giải: a Lấy logarit hai vế với số 8, ta 2 1 x.5 x 1   log8 x.5x 1  log8 8 x x 1 1  log8  log8  log8  x  x  log8  1      x   x  log8    x  1   x  1 x  1 log8  x 1    x  1 1   x  1 log8 5      1   x  1 log8   x  1  x  1    x.log8  log8   x   log5 Vậy phương trình có nghiệm: x  1, x   log b PT  3x 32  x 33 x   32 x    x   log 4  x  log   x  log  log  log  x  log  log c Lấy log hai vế phương trình theo số 2 Ta phương trình log 3x  log 2 x   x log  x  x   x ( log  x )     x   log 2 d PT  log (2 x.5x )  log (2.5)  log 2 x  log x  log 2  log  x  x log   log  (log 5) x  x   log  x   1  log x  log   Bài tập tự giải có hướng dẫn: Bài 1: Giải phương trình sau a x.x1 x  100 HD: Điều kiện x   x ( x 1).23 x  52( x 1).22( x 1)  5x  x   22  x x   log 5.( x  x  2)   x    x  1  log 2(loai) b x 3  3x HD:  x 6  3x  x 5  2x www.VNMATH.com www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498  x   3( x  2)( x  4)  x   ( x  2)( x  4) log x    x  log  Bài 2: Giải phương trình sau x2 x a  b 2 x x2 x x2 4 3 x2 c x x 5 x 6 2 x d g 53log5 x  25 x e  36.32 x k 9.x log9 x  x Đs: a 0;  log b 2;log  c 3;  log e 4; 2  log3 f log (log 7) g f 57  75 x 3 x 1 x  18 i x 53  5log x d 2;  log h ; 5 k BÀI TOÁN 3: SỬ DỤNG PHƯƠNG PHÁP ĐẶT ẨN PHỤ - DẠNG I Phương pháp: Phương pháp dùng ẩn phụ dạng việc sử dụng ẩn phụ để chuyển phương trình ban đầu thành phương trình với ẩn phụ Ta lưu ý phép đặt ẩn phụ thường gặp sau: Dạng 1: Phương trình  k   k 1a ( k 1) x .1a x    Khi đặt t  a x điều kiện t > 0, ta được:  k t k   k 1t k 1 1t    Mở rộng: Nếu đặt t  a f ( x ) , điều kiện hẹp t  Khi đó: a f ( x )  t , a f ( x )  t , , a kf ( x )  t k Và a  f ( x )  t Dạng 2: Phương trình 1a x   a x    với a.b   Khi đặt t  a x , điều kiện t  suy b x  ta được: 1t      1t   3t    t t Mở rộng: Với a.b  đặt t  a f ( x ) , điều kiện hẹp t  , suy b f ( x )  t x 2x 2x Dạng 3: Phương trình 1a    ab    3b  chia vế phương trình cho b x  ( 2x x a a a ,  a.b  ), ta được: 1          b b 2x x x a Đặt t    , điều kiện t  , ta được: 1t   2t    b Mở rộng: f Với phương trình mũ có chưa nhân tử: a f , b f ,  a.b  , ta thực theo bước sau: f - Chia vế phương trình cho b f  (hoặc a f ,  a.b  ) www.VNMATH.com 10 www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Bước 4: Kết luận nghiệm cho hệ ban đầu II Bài tập áp dụng: 2 log1 x ( xy  x  y  2)  log  y ( x  x  1)   Bài 1: Giải hệ phương trình :  , ( x, y  ) =1 log1 x ( y  5)  log  y ( x  4)  Giải:  xy  x  y   0, x  x   0, y   0, x   Điều kiện:  (I )   x  1,   y     2 log1 x [(1  x)( y  2)]  2log  y (1  x)  log1 x ( y  2)  log  y (1  x)   (1) (I )    =1 = (2) log1 x ( y  5)  log 2 y ( x  4) log1 x ( y  5)  log  y ( x  4)   Đặt log  y (1  x)  t (1) trở thành: t     (t  1)   t  t Với t  ta có:  x  y   y   x  (3) Thế vào (2) ta có: x  x  log1 x ( x  4)  log1 x ( x  4)=  log1 x 1   x  x2  2x  x4 x4  x0  y  1 Suy ra:    x  2  y 1 + Kiểm tra thấy có x  2, y  thoả mãn điều kiện Vậy hệ có nghiệm x  2, y  y  xx 4 y  32 Bài 2: Giải hệ phương trình   log  x  y    log3  x  y  Giải: x  y   Điều kiện:  x  y   x; y    x y   x y 2     2     (1) Biến đổi hệ phương trình dạng:   y x    y x log x  y   2 (2) x  y     x y   Khi (1) có dạng: y x t t  x  2y  1 2  t     2t  5t       t   t  y  2x  y 1 x  + Với x = 2y  (2)  y  y     y  1  x  2(1) Giải (1): Đặt t  www.VNMATH.com 166 www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 + Với y = 2x  (2)  x  y  vô nghiệm Vậy hệ phương trình có cặp nghiệm (2;1)  log x  x  y  log    y Bài 3: Giải hệ phương trình   2 log ( xy  x  y )  log x  2 Giải: x  Điều kiện   xy  x  y  Từ phương trình thứ hai hệ ta có  x  1 x  y    x  y vào phương trình đầu ta có: 2 x x log2 x  log    x  1  2 Đặt t  log x   xt Phương trình 1  2t 1  (t  1)  2t  2t 1  t   2 t  2t    Xét hàm số f  t   2t  t  f '  x   2t ln1   t  R nên f  t  hàm số đồng biến R nên (*) tương đương t   2t   t  1   t   x  Vậy hệ có nghiệm  x, y    2;  log x  y (3 x  y )  log x  y ( x  xy  y )   Bài 4: Giải hệ phương trình  ( x  R) x x y x y 4  2.4  20  Giải: 0  x  y  Điều kiện:  0  x  y  Phương trình (1)  log x  y (3 x  y )  log x  y ( x  y )   log x  y (3x  y )  log x  y ( x  y)  (3) Đặt t  log x  y (3 x  y ) t    t  3t     t t  - Với t  ta có log x  y (3 x  y )   3x  y  x  y  x  thay vào (2) ta Phương trình (3) trở thành t  y  2.40  20  y  18  y  log 18 (thỏa mãn) - Với t  ta có log x  y (3 x  y )   x  y  ( x  y )   thay vào (2) ta (2)  2( x  y ) 2 2x 1 x y  20  2( x  y ) + Thay (4) vào (5) ta 22( x  y )  Đặt u  2( x y ) 2 3x y x y ( x y) x y  20 (5)  20  22( x  y )  x  y  20 (6) u  5(loai ) phương trình (6) trở thành u  u  20    u  www.VNMATH.com 167 Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.VNMATH.com Email: Loinguyen1310@gmail.com Với u  ta có x  y   x  y   x  y  x  y  x  Ta có hệ   3 x  y  y 1 Vậy hệ có nghiệm  x; y   (0;log 18); (1;1) 2log y  x   Bài 5: Giải hệ phương trình:  x x 1 2 log y  log3 y   Giải: Điều kiện: y  ( x, y   ) Đặt a  log y; b  x (b  0)  a   b  a   2a  b   b  2    Hệ cho tương đương với   a  ab  2a  2b 2a  10a     b   log y  a   y  81 ta có  x Với   x  b  2  Vậy hệ có nghiệm ( x; y )  (2;81) 2.log3 y  log x   Bài 6: Giải hệ phương trình :   log y  (log x  1).log  Giải: x  Điều kiện  y  2.log y    log x 2  2.log y  log x    Hệ phương trình   log y   log x  log y  log x    log  2.b  a  a  log x Đặt  HPT trở thành:  b  log y b  a  2  a  2  a  1  a  a  2a      b  a  b  b  a   log x  x  (thỏa mãn)   y  log y  Vậy hệ có nghiệm nhất:  x; y    2;1 www.VNMATH.com 168 Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.VNMATH.com Email: Loinguyen1310@gmail.com Bài 7: (ĐHCT – 2001) Xác định giá trị tham số m để hệ phương trình sau có nghiệm phân biệt: (1) log ( x  1)  log ( x  1)  log   (2) log ( x  x  5)  m log x2 2 x 5   Giải: Ta có: 1  log ( x  1)  2log( x  1)  2log  log ( x  1)  log ( x  1)  x   2( x  1)  1 x  2( x  1)  Đặt t  log ( x  x  5) (2) trở thành: t  Ta có: t '  m   t  5t  m  t 2x   0, x  (1,3)  t  log ( x  x  5)  f ( x) đồng biến (1;3) ( x  x  5) ln 2 Lại do: t  f  x  đồng biến (1, 3) nên  x    t  2  t  Vậy hệ có nghiệm phân biệt   có nghiệm phân biệt t  5t  m  Xem hàn số: y  f (t )  t  5t (2, 3) Bảng biến thiên:  25  Dựa vào bảng biến thiên ta có đáp số m    ; 6     2 log 3 x (6  y  xy  x )  log  y ( x  x  9)  Bài 8: (ĐHTS – 2001) Giải hệ phương trình:  log 3 x (5  y )  log  y ( x  2)   Giải: 2 log 3 x   y  xy  x   log  y  x  x    (1)  Giải hệ phương trình:  (2) log 3 x   y   log  y ( x  2)   www.VNMATH.com 169 www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 0   x  0   y   6  y  xy  x   Điều kiện:  x  6x   5  y    x   2  x   x   y  y 1  Ta có (1)  log 3 x   y )(3  x   log  y   x     log 3 x (2  y )  1  log 2 y   x   (vì  y  – x  )  log 3 x (2  y )  log 2 y 3  x   (*) Đặt t  log (2  y ) (*) trở thànht: t    t  2t   (vì t = không nghiệm) 3 x t (2  y )    x   y  y  x  Do phương trình (1)  log 3 x Thế y  x  vào (2) ta được: log (6  x)  log ( x  2)  3 x 3 x  log (6  x)  log ( x  2)  log (3  x)  log (6  x)  log ( x  2)(3  x) 3 x 3 x 3 x 3 x 3 x x    x  ( x  2)(3  x )  x  x     y  1 x   loai   x  Vậy hệ phương trình có nghiệm   y  1 Bài tập tự giải có hướng dẫn: 4 y log x   Bài 1: Giải hệ phương trình sau :  2 y log x    HD: Đặt: u  22 y  0, v  log x uv  Hệ phương trình    u  v   x  4; y    u  v  BÀI TOÁN 3: SỬ DỤNG PHƯƠNG PHÁP HÀM SỐ I Phương pháp Ta thực theo bước sau: Bước 1: Đặt điều kiện cho biểu thức hệ có nghĩa Bước 2: Từ hệ ban đầu xác định phương trình hệ theo ẩn theo ẩn, giải phương trình phương pháp hàm số biết www.VNMATH.com 170 Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.VNMATH.com Email: Loinguyen1310@gmail.com Bước 3: Giải hệ nhận II Bài tập áp dụng: log x    log y  Bài 1: Giải hệ phương trình  log y    log3 x  Giải: Điều kiện x; y  Biến đổi tương đương hệ dạng:   log  x  3  1  log y  log  x  3  1  log y   (I)  log  y  3  1  log x  1  log x   log  y  3      log  x  3  log x  log  y  3  log y (1) Xét hàm số: f  t   log  t  3  log t Miền xác định D   0;   Đạo hàm f  t     0, t  D  hàm số đồng biến  t  3 ln t.ln Vậy phương trình (1) viết dạng: f  x   f  y   x  y x  y  Khi hệ (I) trở thàmh:  log  x  3  1  log x  (2)  (II) Giải (2):  x   221 log3 x   x   4.2log3 x  x   4.2log3 2.log2 x    x   x log3 2  x   4.x log3  x1log3  x  log3  (3) Xét hàm số g  x   x1 log3  3.x  log3 Miền xác định D   0;   Đạo hàm: g '  x   1  log  x  log3  3log 4.x 1 log3  x  D  hàm số ln nghịch biến Vậy phương trình (3) có nghiệm nghiệm Nhận xét x = nghiệm phương trình bới đó: 11log3  3.11 log3    x  y Khi hệ (II) trở thành:   x  y 1 x  Vậy hệ cho có nghiệm (1;1)  x  x  ln(2 x  1)  y (1)  Bài 2: Giải hệ phương trình:   y  y  ln(2 y  1)  x (2)  Giải: 1 Điều kiện: x   ; y   2 www.VNMATH.com 171 Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.VNMATH.com Email: Loinguyen1310@gmail.com Lấy 1 –    f  x   f  y  Với f  t   t  4t  ln  2t  1 (t   )  f đồng biến  x = y 2  g  x   x  x  ln  x  1  ; g(x) đồng biến  x = nghiệm Thử lại thỏa mãn Vậy hệ có nghiệm x = y = Bài 3: Tìm m để hệ phương trình sau có nghiệm: (2 x  1)  ln( x  1)  ln x  = (2 y  1) ln( y  1)  ln y  (1)   (2)  y   ( y  1)( x  1)  m x    Giải: x  Điều kiện  y  x 1 Đặt f  x    x  1  ln  x  1 – ln x   (2 x  1) ln   x Gọi x1 ; x2  [0;+) với x1  x2 x1   x2     Ta có : x1  x2    f ( x1 )  f ( x2 ) : f(x) hàm số tăng ln  ln  0 x1 x2  Từ phương trình (1)  x = y x 1 x 1 (2)  x   ( x  1)( x  1)  m x     24 m0 x 1 x 1 x 1 Đặt X  0≤X1  x = y  2007   g ”  x   x2  kết hợp tính liên tục hàm số  đpcm BÀI TOÁN 4: SỬ DỤNG PHƯƠNG PHÁP ĐÁNH GIÁ I Phương pháp: II Bài tập áp dụng: www.VNMATH.com 174 Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.VNMATH.com Email: Loinguyen1310@gmail.com e x  e y   log y  log x  xy  1 (1)  Bài 1: (ĐHTN – 1997) Giải hệ phương trình  2  x  y  1(2)  Giải: Điều kiện x; y  Giải (1) ta có nhận xét sau: VT1   - Nếu x  y  log x  log y , đó:   (1) vơ nghiệm VP1    VT1   - Nếu x  y  log x  log y , đó:   (1) vơ nghiệm VP1    - Vậy x  y nghiệm (1) x  y x  y x  y  Khi hệ có dạng:    x y 2  x  y  2 x   x    1  Vậy hệ có cặp nghiệm  ;   2 log  x  y   x  y   Bài 2: Giải hệ phương trình  log x  y   xy  1  x  y   Giải: x  y  x  y   Điều kiện:  xy    0  x  y    xy    Từ phương trình thứ hệ với viếc sử dụng ẩn phụ t  x  y  , ta được: log t  t  Đặt u  log t  t  2u phương trình có dạng: log t  u  x  y 1 Bernoulli 2u  u       u  x  y  log t   x  y   x  y   x  0; y  x  y  + Với x + y = hệ có dạng:       xy    xy   x  1; y  log  xy  1  x  y  x  y  x  y   + Với x + y = hệ có dạng:    log  xy  1   xy    xy   Khi x; y nghiệm phương trình: t  2t   vô nghiệm Vậy hệ có cặp nghiệm (0;1) (1;0) log y  log x   y  x  x  xy  y * 3  2 Bài 3: Giải hệ phương trình:  x2  y    www.VNMATH.com  175 www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 Giải: Điều kiện: x > ; y > y  Ta có : x  xy  y   x    y  x, y >0 2   VT(*)   (*) vô nghiệm nên hệ vô nghiệm Xét x > y  log x  log y    VP(*)  2 Xét x < y  log x  log VT(*)  y  (*) vô nghiệm nên hệ vô nghiệm VP(*)  0  Khi x = y hệ cho ta   x = y = (do x, y > 0) 2 x  y  Vậy hệ có nghiệm  x; y   2;   Bài tập tự giải có hướng dẫn:  x   3x  k   Bài 1: (ĐHDB - 2002) Tìm k để hệ BPT sau có nghiệm  1  log x  log  x  1  2 HD: Xét BPT ta có log x  log  x  13  - Giải xong 1  x  3 - Xét BPT x   3x  k   k  f ( x)  x   x - Xét 1  x  , k  f ( x)  1  x   x log (1   tan x   log (1  tan y )  Bài 2: Giải hệ phương trình:  log (1   tan y   log (1  tan x )  HD: Nếu ba số x, y, z Giả sử x = y –  y ln y  y   y – – y ln y f ’  y    ln y; f ’  y    y  f 1  Nếu  y  f ’  y   suy f  y   Nếu y  f ’  y   suy f  y   Xét f Vậy y = nghiệm Bài tập tổng hợp tự giải: Bài 1: Giải hệ phương trình sau www.VNMATH.com 176 Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498  x  x  log (6  y )  x   a  y  y  log (6  z )  y  z  z  log (6  x)  z   log  3sin x  log3 (3cos y )  c  log  3cos y  log (3sin x )  log x xy  log y x  e  log x y y  4y   Bài 2: Giải hệ phương trình sau y  x x y   32 a 4 log  x  y    log  x  y   log x  3x  y   log y  y  x    c  log x  3x  y  log y  y  x    www.VNMATH.com Email: Loinguyen1310@gmail.com  x  3x   ln( x  x  1)  y  b  y  y   ln( y  y  1)  z  z  3z   ln( z  z  1)  x   x3  3x2  y3  y   d   x2  y 1  log y  y    log x  x     x  3      lg  x  y    3lg  f  lg  x  y   lg  x  y   lg   x log3 y  y log3 x  27 b  log y  log x  log  log x   log  log y   d  log  log x   log  log x   log  x  y   log  x    log  x  y  4log  xy     xy log3   e  f  x 2  x  y  x  y  12 log  xy  1  log  y  y  x    log   y   x  x   x   x   e (ĐHM – 1999)  với   tùy ý  Đs: a (2;1) b   y  x  y   y    f (1;3), (3;1) Bài 3: Giải hệ phương trình sau  lg x  lg y  lg xy  2.log1 x   xy  x  y    log 2 y  x  x  1   a  b  lg x  y   lg x lg y  log1 x  y    log 2 y  x      log x  log y   log  c  log  x  y     x log8 y  y log8 x  d  log x  log y  2 x  xy  y  14  e  log  x 1  y    log y   x  1   Đs: 5 log x  log y  8  f  5 log x  log y  9  www.VNMATH.com 177 Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.VNMATH.com Email: Loinguyen1310@gmail.com  x  x    d.(TCKT – 2001)   y  x    Bài 4: Giải hệ phương trình sau log x 3x  y   a  log y 3 y  x    4x  x   y  b  x log x  y   1  log x  log y  c   x  y2  2y   2log y x  log x y   d   xy   x  y  log y  log x 2  xy  e  3  x  y  16 lg y  lg x 3  f  4 x lg  3 y lg    Đs: d  x; y    4;  ,  2;  a  x; y    5;5  Bài 5: Giải hệ phương trình sau  x  log y  a  x  y  y  12  81y   log x  log y  c  2 x  y   lg x  lg y  e  2  x  y  29 Bài 6: Giải hệ phương trình sau  y log y x   y  a  log x xy  log y x  log x  log y   log c   x  y  20  Đs: d x  y  Bài 7: Giải hệ phương trình sau log xy  log x y  a  y x y  2 3  log xy   b  x log y   log x  log y   log d  x  y  5  log y x  y.x  x2 f  log y log y  y 3 x     xy  b  2 lg x  lg y  log x y  log y x   d   3 x  y     x( y  1)  y ln y  b  y ( z  1)  z ln z  z ( x  1)  x ln x  www.VNMATH.com 178 www.VNMATH.com Email: Loinguyen1310@gmail.com Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498     log   x  log 1  y    c  log   y  log 1  x    Đs: a x  y  log 2  x   6log y (1)  d  x x 1 (2) y  y    y ln y x  y    z ln z b Nếu x  theo y, z  hệ cho   y   hệ vô nghiệm ( z  1)   x ln x z  ( x  1)  d  x; y    –1;1   4;32  Bài 8: Giải hệ phương trình sau log x  log y   log log x  log y   b  a   x  y  16 log 27 ( x  y )   5 log x  log y  log 2  log ( x  y )  log ( x  y )   c  d  log y   log x  xy   3x  log x ( x  y )   x log  log y  y  log 2   e  f   x log 12  log x  y  log y log x  log x y     log x ( x  1)  lg 1,7  y  lg x    g  h  log (3   x  x )  0,5  y  lg x     xy  a lg ( x  y )  log x y    i  k  l  2 lg y  lg x  lg log x1 ( y  23)  lg x  lg y  (lg a )   Đs:  32  a  x; y    3;  ,  6;3 b 2; c  2;  2  3   3   29  d  3;1   ; e 1;  f  5;  g  ;     2  3     1  10 20  1   h 10; i  2;  k  10; 20    ;  l  ; a    a3 ;  a  3  a   Bài 9: Giải hệ bất phương trình sau     www.VNMATH.com 179 Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 www.VNMATH.com Email: Loinguyen1310@gmail.com log x  log x   a  x   3x  x   3  x  1 lg  lg(2 x 1  1)  lg(7.2 x  12)  c  log x  x     ln(1  x)  ln(1  y )  x  y e  2  x  12 xy  20 y   2 e (0;0) Đs: d   ;   5  x  1 log  log  x 1  1   log  7.2 x  12   b  log x  x     log1 x (1  y  y )  log1 y (1  x  x )   d  log1 x (1  y )  log1 y (1  x)   HỆ PHƯƠNG TRÌNH LOGA CÓ CHỨA THAM SỐ 1  log x  log y  Bài 1: Cho hệ  (a tham số)  x  y  ay   a Giải hệ a  b Tìm a để hệ có nghiệm Đs: a  log x (ax  by )  log y (ay  bx)   Bài 2: Cho hệ  log x (ax  by ) log y (ay  bx)   a Giải hệ a  3, b  b Giải biện luận a  0, b  log x ( x cos   y sin  )  log y ( y cos   x sin  )   Bài 3: Cho hệ  log x ( x cos   y sin  ) log y ( y cos   x sin  )    a Giải hệ     b Cho    0;  biện luận hệ  2 x  y  a Bài 3: Xác định a để hệ có nghiệm    a  1 log ( x  y )  log ( x  y )  Góp ý theo địa Email: Loinguyen1310@gmail.com địa chỉ: Nguyễn Thành Long Số nhà 15 – Khu phố – Phường ngọc trạo – Thị xã bỉm sơn – Thành phố hóa “Vì ngày mai tươi sáng, em cố lên, chúc em học tốt đạt kết cao… chào thân ái” www.VNMATH.com 180 ... Giáo viên: Nguyễn Thành Long DĐ: 01694 013 498 CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ MŨ - LƠGARIT CHƯƠNG I: PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH - BẤT PHƯƠNG TRÌNH - HỆ MŨ CHỦ ĐỀ... = x 3  x3   x 2  x 1 x 2 x 1  10 x 3x-1 + x 3x - 2x  = 2x -3 x-1  11 4sinx - 21 + sinx cos(xy) + 12  x +x  + 21-x -  x +x y  1-x 2 -1 = BÀI TOÁN 11: PHƯƠNG PHÁP LƯỢNG GIÁC HÓA... phương trình sau: 8.3x + 3.2x = 24 + 6x → x = x = 12.3x + 3.15x - 5x + = 20 2x + 3x = + 6x - x.2x + 23 - x - x = 5 2x +1 + x +1 - 175 x - 35 = x2  x  21 x  2 x 3 x   4x x 1 6 x5 1  42

Ngày đăng: 26/10/2014, 16:00

TỪ KHÓA LIÊN QUAN

w