1. Trang chủ
  2. » Luận Văn - Báo Cáo

JOINT MODELS FOR LONGITUDINAL AND SURVIVAL DATA

153 194 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 153
Dung lượng 826,47 KB

Nội dung

JOINT MODELS FOR LONGITUDINAL AND SURVIVAL DATA Lili Yang Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Biostatistics, Indiana University December 2013 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee September 23, 2013 Sujuan Gao, Ph.D., Chair Menggang Yu, Ph.D. Wanzhu Tu, Ph.D. Christopher M. Callahan, M.D. Terrell Zollinger, Ph.D. ii c  2013 Lili Yang iii DEDICATION To My Family iv ACKNOWLEDGMENTS I would like to express sincere gratitude to my advisor Dr. Sujuan Gao for her constant guidance, encouragement and support in my study. I particularly appreciate Dr. Menggang Yu for his guidance and suggestion on my dissertation. I also thank the other committee members Dr. Wanzhu Tu, Dr. Christopher M. Callahan and Dr. Terrell Zollinger for their insights and comments on my dissertation. It has been a pleasant experience to study in this department, and in this university. I would like to convey my gratitude to all the people who have made the resources available to me, without which I would not be able to complete my study. Finally, I would like to thank my husband Xiao Ni and family, for their unconditional love, encouragement and support. v Lili Yang JOINT MODELS FOR LONGITUDINAL AND SURVIVAL DATA Epidemiologic and clinical studies routinely collect longitudinal measures of multiple out- comes. These longitudinal outcomes can be used to establish the temporal order of relevant biological processes and their association with the onset of clinical symptoms. In the first part of this thesis, we proposed to use bivariate change point models for two longitudi- nal outcomes with a focus on estimating the correlation between the two change points. We adopted a Bayesian approach for parameter estimation and inference. In the second part, we considered the situation when time-to-event outcome is also collected along with multiple longitudinal biomarkers measured until the occurrence of the event or censoring. Joint models for longitudinal and time-to-event data can be used to estimate the association between the characteristics of the longitudinal measures over time and survival time. We developed a maximum-likelihood method to joint model multiple longitudinal biomarkers and a time-to-event outcome. In addition, we focused on predicting conditional survival probabilities and evaluating the predictive accuracy of multiple longitudinal biomarkers in the joint modeling framework. We assessed the performance of the proposed methods in simulation studies and applied the new methods to data sets from two cohort studies. Sujuan Gao, Ph.D., Chair vi TABLE OF CONTENTS LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Bivariate Random Change Point Models for Longitudinal Outcomes . . 1 1.2 Joint Models for Multiple Longitudinal Processes and Time-to-event Out- come . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Dynamic Predictions in Joint Models for Multiple Longitudinal Processes and Time-to-event Outcome . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Bivariate Random Change Point Models for Longitudinal Outcomes 5 2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Indianapolis-Ibadan Dementia Study . . . . . . . . . . . . . . . . . 8 2.4 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 Broken-Stick Model . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2 Bacon-Watts Model . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.3 Smooth Polynomial Model . . . . . . . . . . . . . . . . . . . . . . 15 2.4.4 Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.1 Estimation Using Bivariate Random Smooth Polynomial Models 21 2.5.2 Estimation Using Broken-Stick and Bacon-Watts Models . . . . 23 2.5.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 Application to the IIDS Data . . . . . . . . . . . . . . . . . . . . . . . . 41 vii 2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.8 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Chapter 3 Joint Models for Multiple Longitudinal Processes and Time-to-event Outcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 A Primary Care Patient Cohort . . . . . . . . . . . . . . . . . . . . . . . 55 3.4 Joint Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.1 Longitudinal Models . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.2 The Survival Model . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.4.3 Joint Likelihood Function . . . . . . . . . . . . . . . . . . . . . . 60 3.5 Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.1 Implementing the EM Algorithm . . . . . . . . . . . . . . . . . . 61 3.5.2 Inferences and Goodness-of-fit . . . . . . . . . . . . . . . . . . . . 63 3.6 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.7 Data Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.9 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Chapter 4 Dynamic Predictions in Joint Models for Multiple Longitudinal Pro- cesses and Time-to-event Outcome . . . . . . . . . . . . . . . . . . . . . . . . 85 4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3 Predicting Conditional Survival Probabilities . . . . . . . . . . . . . . . 90 4.4 Predictive Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 viii 4.5.1 Predicting Conditional Survival Probabilities . . . . . . . . . . . 96 4.5.2 Predictive Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Data Application to A Primary Care Patient Cohort . . . . . . . . . . . 109 4.6.1 Predicting Conditional Survival Probabilities . . . . . . . . . . . 110 4.6.2 Predictive Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.8 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Chapter 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 CURRICULUM VITAE ix LIST OF TABLES 2.1 Considered 12 simulation scenarios differing in correlation between two change points (r η 4 η 8 ), variance of each change point (σ 2 η 4 , σ 2 η 8 ) and variance of each measurement error (σ 2  1 , σ 2  2 ). . . . . . . . . . . . . . . . . . . . . 20 2.2 Simulation results of bivariate random smooth polynomial model under scenarios 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Simulation results of bivariate random smooth polynomial model under scenarios 3 and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Simulation results of bivariate random smooth polynomial model under scenarios 5 and 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5 Simulation results of bivariate random smooth polynomial model under scenarios 7 and 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Simulation results of bivariate random smooth polynomial model under scenarios 9 and 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.7 Simulation results of bivariate random smooth polynomial model under scenarios 11 and 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.8 Simulation results of scenarios 5 and 6 for bivariate random smooth poly- nomial model with unknown ε 1 and ε 2 . . . . . . . . . . . . . . . . . . . . 32 2.9 Simulation results of scenarios 7 and 8 for bivariate random smooth poly- nomial model with unknown ε 1 and ε 2 . . . . . . . . . . . . . . . . . . . . 33 2.10 Simulation results for comparing three bivariate models under scenarios 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.11 Simulation results for comparing three bivariate models under scenarios 3 and 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 x [...]... bivariate random change point models for joint modeling of bivariate longitudinal outcomes Second, we present joint models for multiple longitudinal outcomes and time-to-event data Finally, we focus on predicting conditional survival probabilities and evaluating the improved predictive ability by adding new longitudinal biomarkers in the joint models 1.1 Bivariate Random Change Point Models for Longitudinal. .. (2006) constructed joint models between a random change point model for a longitudinal outcome and a lognormal model for time-to-event data In this paper, we consider bivariate change point models for two longitudinal outcomes with a focus on the correlations between the two change points Motivated by data from a longitudinal study of dementia, we developed joint models for bivariate longitudinal outcomes... several topics related to joint models for longitudinal and survival data analysis were investigated Longitudinal data analysis has been widely applied to a single longitudinal outcome in various medical research areas, including basic science research, clinical trials and epidemiological studies In practice, however, many studies often collect multiple longitudinal outcomes and joint models can be used to... 79 Parameter estimates, standard errors and 95%CI for the joint Models 2 α1 and α2 are the association estimates between the risk of CAD and slope of systolic and diastolic BP at event time point, respectively λi i = 1, , 7 denote the baseline hazards of the 7 piecewise constant intervals 80 3.10 Parameter estimates, standard errors and 95%CI for the joint Models 3 α1 and α2 are the association... (Faucett and Thomas, 1996; Wulfsohn and Tsiatis, 1997) We focused on this type of joint 3 models with multiple longitudinal processes and a time-to-event outcome, and developed a maximum-likelihood method for the parameter estimation 1.3 Dynamic Predictions in Joint Models for Multiple Longitudinal Processes and Time-to-event Outcome In the second topic, we proposed a maximum-likelihood method for parameter... along with multiple longitudinal outcomes in medical research studies Joint models for multiple longitudinal outcomes and time-to-event data can be used to assess the association between the time-to-event outcome and multiple longitudinal outcomes We developed several novel approaches for analyzing multiple longitudinal outcomes, and multiple longitudinal outcomes with time-to-event data First, we introduce... bivariate models under scenarios 11 and 12 39 2.16 Simulation results for comparing three bivariate models with data generated from a bivariate random smooth polynomial model using lognormal distribution for all random effects and errors 40 2.17 Bayesian estimates of population parameters and 95% Posterior Interval (95% PI) for bivariate random broken-stick... bivariate random Bacon-Watts model (BW1 ) and bivariate random smooth polynomial model (SP1 ) from IIDS data 47 3.1 True parameter values for the four scenarios of simulation studies 67 3.2 True parameter values for the two longitudinal models and proportional hazard function of simulation studies 3.3 Simulation results for comparing Joint model approach and Two-stage... Therefore, an ideal model should not only allow the examination on the contribution from various attributes of the longitudinal outcomes in order to establish the association between the longitudinal outcome and the time to event but also takes the measurement errors of the longitudinal biomarkers into account With this strong motivation, a framework of joint models of longitudinal and survival data. .. bivariate random Bacon-Watts model BW1 (dashed black line) and bivariate random smooth polynomial model SP1 (solid black line) The three fitted curves on the top are for cognitive scores, and the three fitted curves on the bottom are for BMI measures 3.1 Observed annualized longitudinal systolic and diastolic BP measures over time and fitted population mean curves for the CAD and . JOINT MODELS FOR LONGITUDINAL AND SURVIVAL DATA Lili Yang Submitted to the faculty of the University Graduate School in partial fulfillment of the. Yu, Ph.D. Wanzhu Tu, Ph.D. Christopher M. Callahan, M.D. Terrell Zollinger, Ph.D. ii c  2013 Lili Yang iii DEDICATION To My Family iv ACKNOWLEDGMENTS I would like to express sincere gratitude. suggestion on my dissertation. I also thank the other committee members Dr. Wanzhu Tu, Dr. Christopher M. Callahan and Dr. Terrell Zollinger for their insights and comments on my dissertation. It

Ngày đăng: 24/08/2014, 11:40

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN