TIẾT 20: ÔN TẬP CHƯƠNG II I/ Mục tiêu: Qua bài học học sinh cần nắm: 1/ Kiến thức: Làm cho học sinh hiểu được khái niệm về mặt tròn xoay,sự hình thành mặt tròn xoay và các yếu tố của mặt tròn xoay - Định nghĩa, tính chất đường sinh của mặt nón tròn xoay,mặt trụ tròn xoay - Nắm được định nghĩa mặt cầu, đồng thời hiểu được mặt cầu là một loại mặt tròn xoay 2/ Kỹ năng: -Biết nhận dạng được các vật thể tròn xoay,cụ thể là các định nghĩa và cáckhái niệm có lien quan như trục, đường sinh - Biết tính diện tích xung quanh, diện tích toàn phần của hình nón tròn xoay, hình trụ tròn xoay và diện tích mặt cầu đồng thời biết tính thể tích các khối tròn xoay tương ứng 3/ Tư duy và thái độ: - Phát triển khả năng tư duy logic, đối thoại sang tạo, quy lạ về quen - Chủ động phát hiện, chiếm lĩnh tri thức mới, có tinh thần hợp tác II/ Chuẩn bị: - Học sinh: Ôn tập lý thuyết chương I, tham khảo bài học ở nhà, các dụng cụ học tập - Giáo viên: Giáo án, các đồ dung dạy học, các thiết bị công nghệ thông tin III/ Phương pháp: Gợi mở vấn đáp, các nhóm thảo luận IV/ Tiến trình bài học 1/ Ổn định lớp: 2/ Kiểm tra bài cũ: 3/ Bài mới: HOẠT ĐỘNG CỦA GV HOẠT ĐỘNG CỦA HS NỘI DUNG - Hướng dẫn HS chọn các khẳng định đúng trong BT 1 - Gọi HS đọc đề và vẽ hình - Gọi HS nêu CT tính diện tích xung quanh của hình nón - Hướng dẫn HS tìm các yếu tố: r và l - Khi quay xung quanh cạnh AB, đường gấp khúc - Chọn các khẳng định đúng - Vẽ hình BT2 - Nêu CT: xq S rl -Vì AD ABC nên tam giác ABD vuông tại A và có góc ABD nhọn - Tạo nên một hình nón tròn xoay có đường sinh là cạnh BD - Áp dụng định lí Pitago Bài tập 1: Các khẳng định đúng: câu a/ và câu d/ Bài tập 2: a D A B C - Diện tích xung quanh của hình nón là: 2 . . . . . 2 2 xq S rl AD BD a a a BDA tạo nên hình gì ? - Tính l = BD ? - Gọi HS nêu CT tính thể tích của khối nón - Theo giả thiết ta có gì ? - H là chân đường cao hạ từ đỉnh S đến dáy nên có kết luận gì ? - Từ đó suy ra hình chóp đối với tam giác vuông ABD để tính BD 2 2 2 2 BD AB AD a a a - Nêu CT: 2 1 . 3 V r h - Các cạnh bên SA , SB , SC ,… bằng nhau - Ta có : SH ABC - Thể tích của khối nón là: 3 2 2 1 1 . . . 3 3 3 a V r h a a Bài tập 3: Gọi S là đỉnh của hình chóp Gọi H là chân đường cao hạ từ đỉnh S đến đáy - Vì SA = SB = SC =…. nên HA = HB = HC =… Như vậy hình chóp đó có đáy là 1 đa giác nội tiếp được trong một đường tròn tâm H bán kính HA Bài tập 4: đó nội tiếp được trong một mặt cầu vì có các đỉnh nằm trên mặt cầu - Hướng dẫn HS vẽ hình , phân tích giả thiết ,kết luận - Nêu các cặp tiếp tuyến - Vẽ hình, phân tích giả thiết, kết luận - Các cặp tiếp tuyến bằng nhau là: ' AA AM và ' BM BB P C ' N M B ' A ' D A B C Gọi M , N , P là trung điểm của các cạnh AB, BC , CA và ' ' ' , , A B C là tiếp điểm của các cạnh bên SA, SB, SC - Ta có ' ' ' SA SB SC do đó SA = SB = SC Nên chân đường cao kẻ từ S trùng với tâm đường tròn ngoại tiếp đáy là tam giác ABC - Tam giác ABC đều vì: AB = 2BM = 2BN = BC = 2CN = 2CP = CA Vậy S.ABC là hình chóp tam giác đều bằng nhau ? - Mà AM = BM nên ta có kết luận gì ? - Ta cần CM tam giác ABC đều - Mà AM = BM nên ' ' AA BB 4/ Củng cố bài học và dặn dò về nhà: - Nằm vững khài niệm mặt tròn xoay và các yếu tố liên quan - Công thức tính diện tích xung quanh và thể tích - Làm các bài tập còn lại trong SGK . Chuẩn bị: - Học sinh: Ôn tập lý thuyết chương I, tham khảo bài học ở nhà, các dụng cụ học tập - Giáo viên: Giáo án, các đồ dung dạy học, các thiết bị công nghệ thông tin III/ Phương pháp: Gợi. TIẾT 20: ÔN TẬP CHƯƠNG II I/ Mục tiêu: Qua bài học học sinh cần nắm: 1/ Kiến thức: Làm cho học sinh. tròn xoay có đường sinh là cạnh BD - Áp dụng định lí Pitago Bài tập 1: Các khẳng định đúng: câu a/ và câu d/ Bài tập 2: a D A B C - Diện tích xung quanh của hình nón là: 2 . . .