Gas Turbine Engineering Handbook 2 Episode 17 ppt

16 287 0
Gas Turbine Engineering Handbook 2 Episode 17 ppt

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

G:/GTE/FINAL (26-10-01)/INDEX.3D ± 785 ± [782±800/19] 1.11.2001 2:45PM features of catalytic, 404  ±6 terms, 372  ±3 equivalence ratio, 372 lower heating value, 373 pressure drop, 373 profile factor, 372 reference velocity, 372 stoichiometric proportions, 372 traverse number, 372 Combustor arrangements, typical, 36  ±40, 386  ±92 annular, 36 can-annular, 36 external combustor (experimental), 37  ±40 side combustors, 36  ±7 tubular, 36  ±7 Combustors, 33  ±6, 370  ±408 air pollution problems, 392  ±403 carbon monoxide, 392 dry low NOx combustor, 397  ±403 oxides of nitrogen, 392  ±7 smoke, 392 unburnt hydrocarbons, 392 catalytic combustion, 403  ±8 catalytic combustor design, 406  ±8 features of catalytic combustion, 404  ±6 catalytic combustor design catalytic reactor, 407  ±8 main fuel injector, 407 preburner, 407 combustion, 373  ±5 combustion chamber design, 375  ±81 combustion terms, 372  ±3 design considerations combustion liners, 384  ±5 cross-sectional area, 383 length, 383 liner holes, 384 pressure drop, 383 reliability of combustors, 385  ±6 transition pieces, 385 volumetric heat-release rate, 383  ±4 Wobbe Index, 383 dry low NO x , 397  ±403 fuel atomization and ignition, 381  ±6 combustor design considerations, 383  ±6 ignition, 381  ±6 modules, 704 reliability of, 385  ±6 typical combustor arrangements, 386  ±92 Communications, maintenance, 742  ±4 Compliance matrix, 595 Components, major gas turbine, 26  ±40 combustors, 33  ±6 compressors, 26  ±32 regenerators, 32  ±3 typical combustor arrangements, 36  ±40 Compressed Air Energy Storage Cycle (CAES), 93  ±5 Compressed air, injection of, 101  ±5 Compressibility effect, 115  ±17 Compressors, 26  ±32 axial-flow, 28  ±30, 275  ±318 blade and cascade nomenclature, 276  ±9 cascade test, 284  ±92 compressor stall, 308  ±11 degree of reaction, 294  ±9 deviation rule, 303  ±8 diffusion factor, 300 elementary airfoil theory, 280  ±2 incidence rule, 301  ±3 laminar-flow airfoils, 283  ±4 performance characteristics of axial-flow compressors, 311  ±13 radial equilibrium, 299  ±300 stall analysis of axial-flow compressors, 313  ±17 velocity triangles, 292  ±4 centrifugal, 221  ±74 centrifugal flow, 30  ±2 maintenance, 754  ±5 modules, 703  ±4 performance characteristics, 112, 130  ±2 aerothermal equations, 117  ±22 dimensional analysis, 125  ±30 efficiencies, 122  ±5 performance characteristics of axial-flow, 311  ±13 process centrifugal, 266  ±72 stall analysis of axial-flow, 313  ±17 stalls, 308  ±11 individual blade stall, 311 rotating stall, 308  ±11 stall flutter, 311 surges, 254  ±66, 680  ±1 washing, 455  ±6 Index 785 G:/GTE/FINAL (26-10-01)/INDEX.3D ± 786 ± [782±800/19] 1.11.2001 2:45PM Compressors, aerothermal characteristics, 680  ±1 Compressors, blades, 427 Condition monitoring system, implementation of, 651  ±6 on-line optimization process, 654  ±6 plant power optimization, 653  ±4 Condition monitoring systems, 645  ±9 Continuity equation, 117 Control systems, 635  ±45 and instrumentation, 634  ±91 auxiliary system monitoring, 671  ±7 condition monitoring systems, 645  ±9 failure diagnostics, 681  ±7 implementation of condition monitoring system, 651  ±6 life cycle costs, 656  ±4 mechanical problem diagnostics, 687  ±9 monitoring software, 649  ±51 pressure measurement, 667  ±8 temperature measurement, 665  ±7 vibration measurement, 668  ±71 startup sequence, 642  ±5 generator protection, 645 shutdown, 644 starting preparations, 642  ±3 startup description, 643  ±4 Control systems and instrumentation, gas turbine, 677  ±81 compressor aerothermal characteristics and compressor surge, 680  ±1 identification of losses, 680 Cooling systems, absorption, 99 Cooley-Tukey method, 564 COP (coefficient of performance), 99 Coriolis acceleration, 252 Coriolis circulation, 239 Corrosion, 418  ±22 Costs, life cycle, 656  ±64 Coupling lockeys, 522 Coupling lockup, 528 Coupling maintenance, 760 Couplings and alignment, 605  ±33 shaft alignment, 624  ±32 turbomachinery uprates, 619  ±24 continuously lubricated, 612  ±13 failure modes, 613  ±14 functions, 605 gear, 608  ±14 grease-packed, 612 lock keys, 522 lock up, 528 metal diaphragm, 614  ±18 metal disc, 618  ±19 oil-filled, 612 Creep and rupture, 413  ±15 Critically damped system, 184  ±5 Critical speed calculations, 195  ±8 Critical speed map, 194 Curtis turbine, 345  ±6 Cycle analysis actual, 68  ±85 Brayton-Rankine cycle, 84  ±5 evaporative regenerative cycle, 81  ±4 intercooled regenerative reheat cycle, 76  ±7 intercooled simple cycle, 73  ±5 regenerative cycle, 72  ±3 reheat cycle, 76 simple cycle, 68  ±70 split-shaft simple cycle, 70  ±2 steam injection cycle, 77  ±81 summation of, 85  ±7 theoretical and actual, 58  ±111 actual cycle analysis, 68  ±85 Brayton cycle, 58  ±68 CAES (Compressed Air Energy Storage Cycle), 93  ±5 general overview of combined cycle plants, 87  ±93 power augmentation, 95  ±105 summation of cycle analysis, 85  ±7 summation of power augmentation systems, 105  ±10 theoretical and actual, power augmentation combination of evaporative and refrigerated inlet systems, 99  ±101 injection of compressed air, steam, or water, 96 injection of compressed air, steam, or water for increasing power, 101  ±5 inlet cooling, 96 inlet cooling techniques, 96  ±9 mid compressor flashing of water, 101  ±3 thermal energy storage systems, 101 Cycle plants, general overview of combined, 87  ±93 786 Index G:/GTE/FINAL (26-10-01)/INDEX.3D ± 787 ± [782±800/19] 1.11.2001 2:45PM Energy Distribution, 88 HRSG, 90  ±3 Load Sharing, 89 Cycle, steam injection, 77  ±81 Cyclic fatigue, 416  ±17 D D-CS (Distributed Control Systems), 634, 653, 654 Damped system, 182  ±6 critically, 184  ±5 critically damped system, 184  ±5 overdamped system, 184 underdamped system, 185  ±6 Damping factor, 184, 585 Data retrieval, 689 taping, 568  ±9 trending, 674  ±7 Deflection angle, See Air turning angle Degrees of freedom, 179 Degree of reaction, 294, 325, 340 Deviation angle, 303 rule, 303  ±8 Diagnostics, 681, 687  ±9 combustors, 682  ±4 compressors, 683  ±4 mechanical problems, 687  ±89 turbines, 684  ±5 Diagnostic system(s) aerothermal data collection, 661 components and functions, 658  ±9 data inputs, 659 data retrieval, 689 instrumentation, 659  ±60 requirements of, 647  ±8 vibration instrumentation, 668  ±70 Diagrams Campbell, 211  ±16 impulse, 343  ±4 symmetrical, 344 zero exit swirl, 343 Diffusers, 243  ±6 Diffusion factor, 300 Dimensional analysis, 125  ±30 Flow Coefficient, 127 Pressure Coefficient, 127 Reynolds Number, 127 Specific Speed, 126 Wobbe Index, 383 Discrete Fourier transform. See Fourier transformation Displacement transducers, 565  ±6 DLE (Dry Low Emissions), 394, 397, 398, 400, 402 DLN (Dry Low NO x ), 394 DOE (Department of Energy), 44 Drag coefficient, 281 Dry-friction whirl, 207  ±8 Dry gas seals, 515  ±19 Dry low NOx combustor, 397  ±403 DS (directional solidification), 49, 424 Ductility and fracture, 415  ±16 Dynamic pressure transducers, 567  ±8 E Economic Comparisons, 8 Economic Cycles, 6  ±9 Economics, fuel, 41  ±2, 456  ±8 Economic, prime movers, 3  ±5 Efficiencies, 122  ±5 adiabatic efficiency, 122  ±4 polytropic efficiency, 124  ±5 Efficiency adiabatic, 122  ±4 polytropic, 124  ±5 Electric tracing, 462 Electromechanical systems and analogies, 198  ±211 forces acting on rotor bearing system, 200  ±1 rotor bearing system instabilities, 201  ±4 self-excited instabilities, 204  ±11 Elementary airfoil theory, 280  ±1 attack, angle of, 280  ±2 components of, 281 Elevated tanks, 463 Elgi leakage formulae, 498 Enclosures, 147 Energy equation, 121  ±2 Environmental effects, 43  ±4 EPA (Environmental Protection Agency), 84, 393 EPRI (Electric Power Research Institute), 646 Index 787 G:/GTE/FINAL (26-10-01)/INDEX.3D ± 788 ± [782±800/19] 1.11.2001 2:45PM Equations aerothermal, 117  ±22 continuity equation, 117 energy equation, 121  ±2 momentum equation, 118  ±21 state 113  ±14 Equipment, maximization of efficiency and effectiveness, 725  ±7 Euler turbine equation, 119  ±21, 227, 230, 293, 323, 348 work distribution, 232 Eulerian motion, 113 identities, 561 Evaporative regenerative cycle, 81  ±4 Expander module, 705 F Face seals, 501  ±7 Failure diagnostics, 681  ±7 combustor analysis, 683  ±4 compressor analysis, 682 turbine analysis, 684  ±5 turbine efficiency, 685  ±7 Fast Fourier transform. See Fourier transformation Fatigue cyclic, 416  ±17 thermal, 417  ±18 FFT (fast Fourier transform), 559, 670, 671 Flexible shaft, 192  ±5 Flow coefficient, 127 Fluid-film lubrication. See Bearings Fluids. See Aerothermodynamics Fixed roof tanks, 463  ±4 Fixed seal rings, 501 Flexible supports, 193  ±5 Floating roof tanks, 464 Floating seal rings, 501 Flow straighteners, 694  ±700 flow measurement, 699  ±700 pressure measurement, 695  ±7 temperature measurement, 698 Flutter, 582 FOD (foreign object damage), 432 Forced vibrations, 186  ±9 Foundations, 765 Fouling indicators, 748  ±9 Forgings and nondestructive testing, 427  ±9 Fourier transformation, 559 Cooley-Tukey method, 564 Fracture, and ductility, 415  ±16 Frame type heavy-duty gas turbines, 16  ±18 Free system, undamped, 181  ±2 Frequency, natural, 189 Frequency domain, 559 Fuel economics, 456  ±8 Fuel properties, 443  ±7 Fuel specifications, 440  ±3 Fuel treatment, 447  ±52 Fuel type, 40  ±2 Fuels, 436  ±65 ash content, 441 availability, 440 carbon residue, 441, 444 cleanliness, 440  ±1, 454  ±5 cleaning of turbine components, 454  ±6 corrosivity, 440 deposition and fouling tendencies, 440 economics, 456  ±8 flash point, 443 gaseous, 436, 441 heating value, 440 heavy, 452  ±6 inhibitors, 450 liquid, 436  ±7, 442  ±3 luminosity, 444 operating experience, 458 pour point, 441 properties, 443  ±7 specific gravity, 444 specifications, 440  ±3 sulfur content, 442 treatment, 447  ±52 heat tracing of piping systems, 459  ±61 heavy, 452  ±3 heavy fuels, 452  ±3 operating experience, 458  ±9 storage of liquids, 462  ±5 type of, 146  ±7 types of heat-tracing systems, 461  ±2 Fuel atomization and ignition, 381  ±3 Fuel monitoring system Btu meter, 671  ±2 water content monitor, 671  ±2 Fuel system fouling, 452 788 Index G:/GTE/FINAL (26-10-01)/INDEX.3D ± 789 ± [782±800/19] 1.11.2001 2:45PM Fuel treatment, 334  ±9 centrifugal separators, 448  ±9 electrostatic separators, 448  ±9 Frequency domain, 559 G Gas composition, effects of, 261  ±2 Gaseous fuels. See Fuels Gas, ideal, 113  ±15 See Aerothermodynamics Gas turbine applications, variables for, 141  ±8 Gas turbine components, major, 26  ±40 Gas turbines aircraft-derivative, 18  ±20 application of mechanical standards to, 156  ±75 categories of, 16  ±26 design considerations, 11  ±15 frame type heavy-duty, 16  ±18 increasing work output of simple cycle, 65  ±8 industrial type, 20  ±2 materials, 422  ±7 overview of, 3  ±57 categories of gas turbines, 16  ±26 coatings, 49  ±50 environmental effects, 43  ±4 fuel type, 40  ±2 gas turbine cycle in cogeneration mode, 3  ±9 gas turbine cycle in combined cycle, 3  ±9 gas turbine design considerations, 11  ±15 gas turbine heat recovery, 50  ±3 gas turbine performance, 9  ±11 major gas turbine components, 26  ±40 materials, 48  ±9 supplementary firing of heat recovery systems, 54  ±6 turbine expander section, 44  ±7 performance calculations, 710  ±19 performance tests, 692  ±721 performances, 9  ±11 power turbine, 15  ±21, 55 problems, 768  ±76 reliability factor, 14 serviceability, 14 shaft alignment, 624  ±31 shutdown, 644 small, 16, 22  ±4, 28, 30 startup, 642  ±3, 767 tests, 700  ±2 Gearbox alignment, 535  ±6 baseplate, 536 bearing types, 529  ±30 installation and operation, 535  ±7 oil system, 536  ±7 spray nozzles, 537 Gear coupling failure modes, 613  ±14 Gear couplings, 608  ±14 Gear design, factors affecting, 524  ±32 gear accuracy, 529 gear housings, 531 helix angle, 526  ±8 lubrication, 531  ±2 pressure angle, 525  ±6 scoring, 528  ±9 service factor, 530  ±1 tooth hardness, 528 types of bearings, 529  ±30 Gear types, 522  ±4 Gears, 163  ±6, 521  ±38 factors affecting gear design, 524  ±32 gear types, 522  ±4 installation and initial operation, 535  ±7 manufacturing processes, 532  ±5 gear noise, 534  ±5 gear rating, 533  ±4 grinding, 533 hobbing, 532 hobbing and lapping, 533 hobbing and shaving, 532 housings, 531 installation and initial operation, 535  ±7 lubrication, 531  ±2 manufacturing processes, 532  ±5 noise, 534  ±5 overlap ratio, 527 pressure angle, 525  ±6 rating, 533  ±4 scoring, 528 service factor, 530  ±1 standards. See AGMA tooth hardness, 528 types, 522  ±4 Gear mesh frequencies, 570 Index 789 G:/GTE/FINAL (26-10-01)/INDEX.3D ± 790 ± [782±800/19] 1.11.2001 2:45PM Goodman Diagram, 417 Grease-packed couplings, 612 GUIs (Graphical User Interfaces), 648 H H-S diagram, 325 Half-frequency whirl, 487 Harmonic motion, 180  ±1 Heat-recovery steam generators, 50  ±3 Heat recovery, gas turbine, 50  ±3 Heat recovery systems, supplementary firing of, 54  ±6 instrumentation and controls, 55  ±6 Heat tracing of piping systems, 459  ±61 Heat-tracing systems, types of, 461  ±2 electric tracing, 462 stream tracing systems, 461  ±2 Heavy fuels, 452  ±3 Helmholtz vorticity law, 239 Horizontally split casings, 266  ±7 Hot corrosion mechanism, 418, 420, 443 Hot-section maintenance, 751  ±4 Hot section wash, 454  ±5 HP (High Pressure Section), 92  ±5 HPP (Hybrid Power Plants), 5 HRSGs (Heat Recovery Steam Generators), 50, 51, 58, 88, 89, 92, 104, 147, 646, 680 Hub-to-tip ratio. See Aspect ratio Hydrocarbons, unburnt, 392 Hysteretic whirl, 206  ±7 I Ideal gas, 113  ±15 Ignitor plug, 382  ±3 IGV (Inlet Guide Vanes), 90, 710 IGVs (inlet guide vanes), 223, 229  ±32 Impeller fabrication, 269  ±72 electron beam technique, 271 materials, 271  ±2 slot welding technique, 271 Impeller fabrication, 269  ±72 Impellers, Design 223  ±41 inlet guide vanes 223, 229  ±32 causes of slip in, 238  ±41 boundary-layer development, 239  ±40 Coriolis circulation, 239 leakage, 240 number of vanes, 240 vane thickness, 240 centrifugal sections of, 237  ±8 Impulse diagrams, 343  ±4 Impulse turbines, 344  ±8 Incidence rule, 301  ±3 Inducers, 236  ±7 camberlines, 236, 278  ±9 inlet (impeller eye), 230 systems, 225 Inlet guide vanes, 229  ±32 nonprewhirl, 230 prewhirl, 229  ±32 types, 229  ±32 Influence coefficient method, 594 See also Balancing Inlet cooling techniques, 96  ±9 evaporative cooling of turbines, 96  ±8 refrigerated inlets for gas turbines, 98  ±9 Instrumentation, control systems and, 634  ±91 Intercooled regenerative reheat cycle, 76  ±7 Intercooled simple cycle, 73  ±5 Intercooling and reheat effects, 65  ±8 IP (Intermediate Pressure Section), 92, 93 Isentropic efficiency, 327  ±28 Isentropic flow. See Compressibility J Journal bearings, 476  ±9 K Karman vortices, 311 Keyphazor, 591 Kronecker delta, 595 L Labyrinth seals, 495  ±99 Laminar-flow airfoils, 283  ±4 Lagrangian motion, 113 Larson-Miller parameters, 414  ±16, 424  ±5, 680 790 Index G:/GTE/FINAL (26-10-01)/INDEX.3D ± 791 ± [782±800/19] 1.11.2001 2:45PM Lift coefficient, 279 LCC (life cycle costs), 730 LCF (low-cycle fatigue), 49, 424 Li-Br (lithium-bromide), 99 Life cycle costs, 656  ±64 criteria for collection of aerothermal data, 661 data inputs, 659 desirable instrumentation, 660  ±1 diagnostic system components and functions, 658  ±9 instrumentation requirements, 659  ±60 pressure drop in filter system, 661  ±4 pressure measurement for compressors and turbines, 664 temperature measurement for compressors and turbines, 664 typical instrumentation, 660 Liner cooling, 378  ±80 air-film method, 380 Liquid fuels. See Fuels Liquids, storage of, 462  ±5 atmospheric tanks, 462  ±3 elevated tanks, 463 fixed roof tanks, 463  ±4 floating roof tanks, 464 open tanks, 463 pressure tanks, 464  ±5 Low-stress high-cycle fatigue, 579 Losses rotor, 250  ±3 stator, 253  ±4 Losses, axial, 424  ±5 LP (Low Pressure Section), 92  ±5 Lubrication, 541  ±57 Alarms, 547 basic oil system, 541  ±8 lubrication oil system, 542  ±7 seal oil system, 547  ±8 cleaning and flushing, 553  ±4 coupling lubrication, 554  ±5 filter selection, 551  ±3 lubricant selection, 549 lubrication management program, 555  ±6 nitrogen purge, 542 reservoir retention time, 542 oil contamination, 550  ±1 oil sampling and testing, 549  ±50 systems, 166  ±8, 541  ±7 M Mach number, 30  ±2, 115  ±17 Relative Machinery startup procedures, large, 767 Maintenance bearing, 755  ±60 clearance checks, 756 thrust-bearing failure, 757  ±60 communications, 742  ±4 compressor, 754  ±5 coupling, 760 hot-section, 751  ±4 philosophy of, 722  ±31 implementation of productive maintenance, 728  ±31 maintenance department requirements, 731 maximization of equipment efficiency and effectiveness, 725  ±7 organization structures for maintenance program, 728 scheduling, 740  ±1 Maintenance techniques, 722  ±77 bearing maintenance, 755  ±60 compressor maintenance, 754  ±5 coupling maintenance, 760 hot-section maintenance, 751  ±4 large machinery startup procedure, 767 philosophy of maintenance, 722  ±31 rejuvenation of used turbine blades, 761  ±4 repair and rehabilitation of turbomachinery foundations, 764  ±7 tools and shop equipment, 735  ±47 borescope inspection, 747 condition and life assessment, 737  ±8 inspection, 744  ±6 maintenance communications, 742  ±4 maintenance scheduling, 740  ±1 redesign for higher machinery reliability, 738  ±40 spare parts inventory, 736  ±7 training of personnel, 731  ±5 type of personnel, 731  ±2 type of training, 732  ±5 turbomachinery cleaning, 747  ±51 typical problems encountered in gas turbines, 768  ±76 Index 791 G:/GTE/FINAL (26-10-01)/INDEX.3D ± 792 ± [782±800/19] 1.11.2001 2:45PM Materials, 48  ±9, 411  ±35 bearing, 486  ±7 coatings, 429  ±35 future coatings, 434  ±5 shroud coatings, 434 compressor blades, 427 forgings and nondestructive testing, 427  ±9 gas turbine, 422  ±7 turbine wheel alloys, 425  ±7 gas turbine materials, 422  ±7 general metallurgical behaviors in gas turbines, 413  ±22 corrosion, 418  ±22 creep and rupture, 413  ±15 cyclic fatigue, 416  ±17 ductility and fracture, 415  ±16 thermal fatigue, 417  ±18 Goodman diagram, 417 Larson-Miller Parameters, 416  ±18 Mechanical drives, 143 Mechanical parameters, 150  ±6 Mechanical seal selection and application, 507  ±11 Mechanical seals, 501  ±7 Mechanical standards application to gas turbine, 156  ±75 gears, 163  ±6 lubrication systems, 166  ±8 vibration measurements, 168  ±75 and performance, 141  ±77 application of mechanical standards to gas turbine, 156  ±75 mechanical parameters, 150  ±6 variables for gas turbine application, 141  ±8 Meriodional plane, 232  ±5 velocity, 120, 240 Metal diaphragm couplings, 614  ±18 Metal disc couplings, 618  ±19 Metallurgical behaviors creep and rupture, 413  ±15 cycle fatigue, 416  ±17 ductility and fracture, 415  ±16 thermal fatigue, 417  ±18 corrosion, 418 MI (maintainability improvement), 724 Misalignment, 203, 578 Micro-turbines, 24  ±6 Modal balancing, 592  ±4 Modules air inlet filter, 703 combustor, 704 compressor, 703  ±4 expander, 705 Momentum equation, 118  ±21 Monitoring and diagnostic systems, 647  ±9 Monitoring software, 649  ±51 MP (maintenance prevention), 724 Multiplane balancing, 594  ±7 user's guide for, 600  ±2 MVT (multi-venturi tube) fuel, 407 N Na 2 SO 4 (sodium sulfate), 429 NACA (National Advisory Committee for Aeronautics), 279, 284, 304 NASA (National Aeronautics and Space Administration), 279, 362 Natural frequency, 189 Newtonian approach, 183, 186 Nitrogen, oxides of, 392  ±7 Noncontacting seals, 494  ±501 Nondestructive testing, forgings and, 427  ±9 NO x combustor, dry low, 397  ±403 NO x (nitrogen oxides), 15, 43  ±4, 55, 392  ±7, 403, 404, 700 NO x prevention, basis for, 395  ±7 Nozzle bowing, 770 efficiency, 325  ±6 vanes, 321  ±3 O O&M (operation and maintenance), 99, 645 OEM (original equipment manufacturer), 736, 737 Oil contamination, 550  ±1 coolers, 545  ±6 sampling and testing, 549  ±550 Oil-filled couplings, 612 Oil system, associated, 513  ±14 792 Index G:/GTE/FINAL (26-10-01)/INDEX.3D ± 793 ± [782±800/19] 1.11.2001 2:45PM Oil whirl, 206  ±10, 488, 570 On-line optimization process, 654  ±6 Open tanks, 463 Optimum pressure ratio, 61 Oscillatory function, 559  ±60 Orbital balancing, 591  ±2 OTSG (Once Through Steam Generators), 51 Overdamped system, 184 Oxidation, 418  ±21 Oxides of nitrogen (NO x ), 392  ±7, 403, 404 P Performance centrifugal compressor, 249  ±54 rotor losses, 250  ±3 stator losses, 253  ±4 characteristics compressor, 112, 130  ±2 turbine, 112, 132  ±3 characteristics of axial-flow compressors, 311  ±13 codes, 693  ±4 curves, 706  ±7 gas turbine, 9  ±11 and mechanical standards, 141  ±77 performance standards, 148  ±50 variables for gas turbine application, 141  ±8 of radial-inflow turbine, 332  ±5 standards, 148  ±50 Performance computation, gas turbine, 134  ±40 Performance test, gas turbine, 692  ±721, 702  ±6 air inlet filter module, 703 combustor module, 704 compressor module, 703  ±4 expander module, 705 flow straighteners, 694  ±700 gas turbine test, 700  ±2 life cycle and hot section components, 706 performance codes, 693  ±4 performance computations, 707  ±19 gas turbine performance calculations, 710  ±19 general governing equations, 707  ±10 performance curves, 706  ±7 plant losses, 719  ±20 Periodic loading, 204 motion, 180 Phase angle, 180  ±1 Piping systems, heat tracing of, 459  ±61 Pitch, 279 Pitot-tube traverse, 697 Plant locations, 144 losses, 719  ±20 power optimization, 653  ±4 Plant operation mode: base or peaking, 147 Polytropic Compression, 124 efficiency, 124  ±5 head, 127 Power augmentation, 95  ±105 Power augmentation systems, summation of, 105  ±10 Power generation, 143  ±4 Power, injection of compressed air, steam, or water for increasing, 101  ±5 combination of evaporative cooling and steam injection, 104  ±5 injection of humidified and heated compressed air, 102  ±3 injection of steam in combustor of gas turbines, 104 injection of water or steam at gas turbine compressor exit, 103  ±4 mid-compressor flashing of water, 101  ±2 Power-spectrum function, 564 Pressure coefficient, 127 measurement, 667  ±8 ratio, 3, 9  ±12, 14, 16, 20, 23, 26  ±7, 30, 32, 35, 47 static, 23, 114 total, 24, 115 Pressure tanks, 464  ±5 Pretwist angle, 279 Prewhirl, 231  ±2 control vortex, 232 forced vortex, 231 free-vortex, 231 Problem diagnostics, mechanical, 687  ±9 Problems, air pollution, 392  ±403 Problems, noise, 335 Index 793 G:/GTE/FINAL (26-10-01)/INDEX.3D ± 794 ± [782±800/19] 1.11.2001 2:45PM Process centrifugal compressors, 266  ±72 casing material, 266 classification, 266  ±7 compressor configuration, 268  ±9 impeller fabrication, 269  ±72 Propulsion, aircraft, 142  ±3 PTPM (performance based total productive maintenance), 723  ±4, 729  ±31 Pyrometers, 666  ±7 Q Quasi-three-dimensional flow, 232, 333 R Radial equilibrium, 299  ±300 Radial-inflow turbines, 319  ±36 advantages, 319 cantilever-type, 320  ±1 description, 320  ±3 design, 329 losses, 330  ±2 mixed-flow, 320  ±2 noise problems in, 335 performance of, 332  ±5 performance of radial-inflow turbine, 332  ±5 problems, 335 theory, 323  ±8 turbine design considerations, 329  ±30 Ratteau turbine, 345, 346 Reaction turbine, 348  ±51 Real-time analyzer (RTA), 558, 559, 574 Recuperative heat exchanger, 22, 65 Regenerative cycle, 72  ±3 Regenerators, 32  ±3 Reheat cycle, 76 intercooled regenerative, 76  ±7 Reheat effects, intercooling and, 65  ±8 Reheat factors, 328 Relative eddy motion, 241  ±3 Mach number, 230  ±2 velocity, 119  ±120, 292 Reliability, 14, 737  ±8 Residual fuels, 437 Resistive thermal detectors (RTD), 665 Reversible adiabatic flow, 113 Reynolds number, 126, 127, 223, 320, 483 RGT (Recuperative Gas Turbine), 5 Rigid-body critical, 194 Rigid supports, 192  ±3 Ring seals, 499  ±501 Rolling bearings, 469  ±76 Roof tanks fixed, 463  ±4 floating, 464 Rotating machines, application to, 192  ±5 flexible supports, 193  ±5 rigid supports, 192  ±3 Rotating stall, 308  ±11 Rotor bearing systems critical speed calculations for, 195  ±8 forces acting on, 200  ±1 forces applied to rotor, 201 forces generated by rotor motion, 201 forces transmitted to casing and foundations, 200  ±1 instabilities, 201  ±4 forced (resonant) vibration, 203  ±4 periodic loading, 204 Rotor dynamics, 178  ±217 application to rotating machines, 192  ±5 Campbell diagram, 211  ±16 critical speed calculations for rotor bearing systems, 195  ±8 electromechanical systems and analogies, 198  ±211 mathematical analysis, 178  ±92 damped system, 182  ±6 design considerations, 189  ±92 forced vibrations, 186  ±9 undamped free system, 181  ±2 Rotor efficiency, 326 Rotor imbalance, 584  ±91 Rotor losses, 250  ±3 clearance loss, 252 diffusion-blading loss, 251 disc friction loss, 250  ±1 incidence loss, 250 shock in rotor losses, 250 skin friction loss, 252 Rotors, whirl from fluid trapped in, 210  ±11 RTAs (real-time analyzers), 559 subsynchronous vibration analyses using, 574  ±6 RTDs (resistive thermal detectors), 493, 665, 666 794 Index [...]... characteristics,  1 12, 1 32 3  aerothermal equations, 117 22  efficiencies, 122 ±5 gas turbine performance  computation, 134±40 turbomachine aerothermodynamics,  1 12 17  radial-inflow, 319±36  description, 320 ±3 noise problems in, 335 performance of radial-inflow turbine,  3 32 5  theory, 323 ±8 turbine design considerations,  329 ±30  wheel alloys, 425 ±7 Turbomachine aerothermodynamics,  1 12 17  compressibility... 666  thermocouples, 665±6 ratio, 12 G:/GTE/FINAL (26 -10-01)/INDEX.3D ± 797 ± [7 82 800/19] 1.11 .20 01 2: 46PM Index static, 113 total, 113  Temperatures, surface, 404±6  Testing, forgings and nondestructive, 427 ±9 Tests  cascade, 28 4± 92  gas turbine, 700 2  gas turbine performance, 6 92 721  Thermal fatigue, 417 18  Thermocouples, 665±6 Three-dimensional theory, 23 2  Thrust-bearings, 488±9  designs,... damping, 1 82, 183  Volute, 24 7±9 W  Wash, hot section, 454±5  Washing, compressor, 455±6  Water, injection of, 101±5  Wheel alloys, turbine, 425 ±7  12 Cr alloys, 426 ±7 A286 alloy, 427 alloy 706 nickel-based alloy, 425 alloy 718 nickel-based alloy, 425  Cr-Mo-V alloy, 425 ±6 Whirl  aerodynamic, 20 9±10  dry-friction, 20 7±8  from fluid trapped in rotor, 21 0±11  hysteretic, 20 6±7  oil, 20 8±9 Wobbe... Unburnt hydrocarbons, 3 92  Undamped free system, 181 2  Underdamped system, 185±6  Uprates Couplings, 619 24 Utilization factor, 324 G:/GTE/FINAL (26 -10-01)/INDEX.3D ± 798 ± [7 82 800/19] 1.11 .20 01 2: 46PM 798 Index V  Vanadium, 418, 422 , 436±8  Vaporized fuel oil (VFO), 436, 451 2  Variables for gas turbine application, 141±8 enclosures, 147  gas turbine size and efficiency, 144±6 plant location,... type of application, 1 42 4  type of fuel, 146±7  Velocity diagrams, 3 42 4  impulse diagram, 343±4 symmetrical diagram, 344 zero exit swirl diagram, 343 Velocity transducers, 566  Velocity triangles, 29 2±4  absolute, 46, 117 20 axial, 340  diagrams axial compressors, 29 2±300  diagrams axial turbine, 340±50  diagrams, centrifugal compressors, 22 9±31  diagrams radial turbine, 324 ±30  impulse diagram,... dry gas, 515±19  dry gas seal degradation, 517 19 dry gas seal materials, 517 dry gas seal systems, 517  operating range, 516 17 795  face, 501±7  labyrinth, 495±9   mechanical, 501±7, 507±11  noncontacting, 494±501  ring, 499±501 Self-acting bearing, 479  Self-excited instabilities, 20 4±11  aerodynamic whirl, 20 9±10  dry-friction whirl, 20 7±8  hysteretic whirl, 20 6±7  oil whirl, 20 8±9... 4 42, 444 Supports  flexible, 193±5  rigid, 1 92 3  Surface temperatures, 404±6   Surge, compressor, 25 4±66, 680±1 dynamic, 26 4  effects of gas composition, 26 1 2  effects of surge, 26 2±3  external causes, 26 2±3 static, 26 3  surge detection and control, 26 3±6  Surge detection and control, 26 3±6 Swirl diagram, zero exit, 343 Symmetrical diagram, 344 Systems absorption cooling, 99 combination... losses, 25 3±4 exit loss, 25 4 recirculating loss, 25 3 vaned diffuser loss, 25 4 vaneless diffuser loss, 25 4 wake-mixing loss, 25 3 STC (steam turbine) , 640  Steam injection cycle, 77±81  Steam, injection of, 101±5  Stodola slip factor, 24 1±3 Stone walling, 131, 25 5  Stream tracing systems, 461 2  Subsynchronous vibration, 574±6 Sulfidation, 418, 4 42, 444 Supports  flexible, 193±5  rigid, 1 92 3 Â... rotor,  21 0±11  Shaft alignment, 624 ± 32  procedure, 624 ± 32  cold alignment, 626 ±30  hot alignment check, 630 2  prealignment survey, 625 ±6  Shaft instabilities, bearing and, 487±8  Shop equipment, tools and, 735±47 Shrouded impeller, 26 9 Shroud coatings, 434   Signal-to-noise ratio, 558±9, 566±7, 569 Simple harmonic vibration, 565 Site configuration, 144 Slip factor Stanitz, 24 3  Stodola, 24 1±3... Trouble-shooting, 571 Turbine blades, rejuvenation of  used turbine blades, 761±4  Turbine components, cleaning of, 454±6  compressor washing, 455±6  hot section wash, 454±5 Turbines radial-inflow  turbine design considerations, 329 ±30  reaction, 348±51 797 Turbines; See also Micro-turbines  axial-flow, 337±69 expander sections  axial-flow turbines, 46±7  mixed-flow turbine, 44±6 radial-inflow turbine, . 301  ±3 Inducers, 23 6  ±7 camberlines, 23 6, 27 8  ±9 inlet (impeller eye), 23 0 systems, 22 5 Inlet guide vanes, 22 9  ± 32 nonprewhirl, 23 0 prewhirl, 22 9  ± 32 types, 22 9  ± 32 Influence coefficient method,. 27 1 materials, 27 1  2 slot welding technique, 27 1 Impeller fabrication, 26 9  ± 72 Impellers, Design 22 3  ±41 inlet guide vanes 22 3, 22 9  ± 32 causes of slip in, 23 8  ±41 boundary-layer development, 23 9  ±40 Coriolis. 787 G:/GTE/FINAL (26 -10-01)/INDEX.3D ± 788 ± [7 82 800/19] 1.11 .20 01 2: 45PM Equations aerothermal, 117  22 continuity equation, 117 energy equation, 121  2 momentum equation, 118  21 state 113  ±14 Equipment,

Ngày đăng: 13/08/2014, 09:20

Tài liệu cùng người dùng

Tài liệu liên quan