15. Ritchie, P. D., ed., 1972. Vinyl chloride and vinyl acetate polymers. In Vinyl and Allied Polymers, Vol. 2, Iliffe, London, UK. 16. Ritchie, P. D. ed. 1968. Aliphatic polyolefins and polydienes, In Vinyl and Allied Polymers, Vol. 1, p. 2375. Iliffe, London, UK. 17. Rudner, M. A. 1958. Fluorocarbons, Van Nostrand Reinhold, New York. 18. Wall, L. A. ed. 1972. Fluoropolymers, High Polymer Series, Vol. 25, p. 2375. Wiley Interscience, New York. 19. Boundy, R. H. and Boyer, R. F. 1952. Styrene, Its Polymers, Copolymers and Derivatives, Van Nostrand Reinhold, New York. 20. Brighton, C. A., Pritchard, G., and Skinner, G. A. 1979. Styrene Polymers: Technology and Environmental Aspects, Applied Science, London, UK. 21. Brydson, J. A. 1978. Rubber Chemistry, Applied Science, London, UK. 22. Morton, M. ed. 1973. Rubber Technology, Van Nostrand Reinhold, New York; Kaminsky, W. and Steiger, R. 1973. Polyhedra, 7, 22, p. 2375. 23. Basdekis, C. H. 1964. ABS Plastics, Van Nostrand Reinhold, New York. 24. Kinsey, R. H. 1969. Ionomers, chemistry and new developments. Appl. Polym. Symp., 11, 77. 25. Beevers, R. B. 1968. Macromol. Rev., 3, 113. 26. Kine, B. B. and Novak, R. W. 1985. Acrylic and methacrylic ester copolymers, In Encyclopedia of Polymer Science and Engineering, Vol. 1, J. I. Kroschwitz, ed., Interscience, New York; Rehberg, C. E. and Fisher, C. H. 1948. Ind. Eng. Chem., 40, 143. 27. Wu, J., Lin, J., Zhou, M., and Wei, C. 2000. Macromol. Rapid Commun., 21, 1032. 28. Coover, H. W. and McIntyre, J. M. 1985. 2-Cyanoacrylic ester polymers, In Encyclopedia of Polymer Science and Engineering, Vol. 1, J. I. Kroschwitz, ed., p. 161. Interscience, New York. 29. Finch, C. A. ed. 1973. Polyvinyl Alcohol: Properties and Applications,p.161.Wiley,New Yo r k . 30. Goodman, I. and Rhys, J. A. 1965. Polyesters, Vol. 1: Saturated Polymers, Iliffe, London, UK. 31. Al-Ghatta, H., Cobror, S., and Severini, T. 1997. Polym. Adv. Technol., 8, 161. 32. Karayannidis, G. P. and Psalida, E. A. 2000. J. Appl. Polym. Sci., 77, 2206. 33. Awaja, F. and Pavel, D. 2005. Eur. Polym. J., 41, 1453. 34. Parkyn, B., Lamb, F., and Clifton, B. V. 1967. Polyesters, Vol. 2: Unsaturated Polyesters and Polyester Plasticizers, Iliffe, London, UK. 35. Seymour, R. B. and Krishenbaum, G. S. eds. 1986. High Performance Polymers: Their Origins and Development, p. 981. Elsevier, New York, Chapters 8–10. 36. Schnell, H. 1964. Chemistry and Physics of Poycarbonates, Wiley Interscience, New York. 37. Carhart, R. O. 1985. Polycarbonates, Engineering Thermoplastics, Marcel Dekker, New York, Chapter 3. 38. Liu, C. F. and Itoi, H., (to GE). 2000. US Patent 6 043 310. 39. Levechik, S. V. and Weil, E. D. 2005. Polym. Int., 54, 981. 40. Kohan, M. I. ed. 1973. Nylon Plastics, p. 201. Wiley, New York. 41. Nelson, W. E. 1976. Nylon Plastics Technology, Newnes-Butterworths, London, UK. 42. Black, W.B. and Preston, J. eds 1973. High Modulus Wholly Aromatic Fibers , Marcel Dekker, Newyork. 43. Mittal, K. L. 1984. Poyimides: Synthesis, Characterization and Applications, Plenum Press, New York. 44. Gould, D. F. 1959. Phenolic Resins, Van Nostrand Reinhold, New York. 45. Whitehouse, A. A. K., Pritchett, E. G. K., and Barnett, G. 1967. Phenolic Resins, Iliffe, London, UK. 46. Blais, J. F. 1959. Amino Resins, Van Nostrand Reinhold, New York. 47. Vale, C. P. and Taylor, W. G. K. 1964. Aminoplastics, Iliffe, London, UK. 48. Phillips, L. N. and Parker, D. B. V. 1964. Polyurethanes: Chemistry, Technology and Properties, Iliffe, London, UK. 4-160 Plastics Technology Handbook q 2006 by Taylor & Francis Group, LLC 15. Ritchie, P. D., ed., 1972. Vinyl chloride and vinyl acetate polymers. In Vinyl and Allied Polymers, Vol. 2, Iliffe, London, UK. 16. Ritchie, P. D. ed. 1968. Aliphatic polyolefins and polydienes, In Vinyl and Allied Polymers, Vol. 1, p. 2375. Iliffe, London, UK. 17. Rudner, M. A. 1958. Fluorocarbons, Van Nostrand Reinhold, New York. 18. Wall, L. A. ed. 1972. Fluoropolymers, High Polymer Series, Vol. 25, p. 2375. Wiley Interscience, New York. 19. Boundy, R. H. and Boyer, R. F. 1952. Styrene, Its Polymers, Copolymers and Derivatives, Van Nostrand Reinhold, New York. 20. Brighton, C. A., Pritchard, G., and Skinner, G. A. 1979. Styrene Polymers: Technology and Environmental Aspects, Applied Science, London, UK. 21. Brydson, J. A. 1978. Rubber Chemistry, Applied Science, London, UK. 22. Morton, M. ed. 1973. Rubber Technology, Van Nostrand Reinhold, New York; Kaminsky, W. and Steiger, R. 1973. Polyhedra, 7, 22, p. 2375. 23. Basdekis, C. H. 1964. ABS Plastics, Van Nostrand Reinhold, New York. 24. Kinsey, R. H. 1969. Ionomers, chemistry and new developments. Appl. Polym. Symp., 11, 77. 25. Beevers, R. B. 1968. Macromol. Rev., 3, 113. 26. Kine, B. B. and Novak, R. W. 1985. Acrylic and methacrylic ester copolymers, In Encyclopedia of Polymer Science and Engineering, Vol. 1, J. I. Kroschwitz, ed., Interscience, New York; Rehberg, C. E. and Fisher, C. H. 1948. Ind. Eng. Chem., 40, 143. 27. Wu, J., Lin, J., Zhou, M., and Wei, C. 2000. Macromol. Rapid Commun., 21, 1032. 28. Coover, H. W. and McIntyre, J. M. 1985. 2-Cyanoacrylic ester polymers, In Encyclopedia of Polymer Science and Engineering, Vol. 1, J. I. Kroschwitz, ed., p. 161. Interscience, New York. 29. Finch, C. A. ed. 1973. Polyvinyl Alcohol: Properties and Applications,p.161.Wiley,New Yo r k . 30. Goodman, I. and Rhys, J. A. 1965. Polyesters, Vol. 1: Saturated Polymers, Iliffe, London, UK. 31. Al-Ghatta, H., Cobror, S., and Severini, T. 1997. Polym. Adv. Technol., 8, 161. 32. Karayannidis, G. P. and Psalida, E. A. 2000. J. Appl. Polym. Sci., 77, 2206. 33. Awaja, F. and Pavel, D. 2005. Eur. Polym. J., 41, 1453. 34. Parkyn, B., Lamb, F., and Clifton, B. V. 1967. Polyesters, Vol. 2: Unsaturated Polyesters and Polyester Plasticizers, Iliffe, London, UK. 35. Seymour, R. B. and Krishenbaum, G. S. eds. 1986. High Performance Polymers: Their Origins and Development, p. 981. Elsevier, New York, Chapters 8–10. 36. Schnell, H. 1964. Chemistry and Physics of Poycarbonates, Wiley Interscience, New York. 37. Carhart, R. O. 1985. Polycarbonates, Engineering Thermoplastics, Marcel Dekker, New York, Chapter 3. 38. Liu, C. F. and Itoi, H., (to GE). 2000. US Patent 6 043 310. 39. Levechik, S. V. and Weil, E. D. 2005. Polym. Int., 54, 981. 40. Kohan, M. I. ed. 1973. Nylon Plastics, p. 201. Wiley, New York. 41. Nelson, W. E. 1976. Nylon Plastics Technology, Newnes-Butterworths, London, UK. 42. Black, W.B. and Preston, J. eds 1973. High Modulus Wholly Aromatic Fibers , Marcel Dekker, Newyork. 43. Mittal, K. L. 1984. Poyimides: Synthesis, Characterization and Applications, Plenum Press, New York. 44. Gould, D. F. 1959. Phenolic Resins, Van Nostrand Reinhold, New York. 45. Whitehouse, A. A. K., Pritchett, E. G. K., and Barnett, G. 1967. Phenolic Resins, Iliffe, London, UK. 46. Blais, J. F. 1959. Amino Resins, Van Nostrand Reinhold, New York. 47. Vale, C. P. and Taylor, W. G. K. 1964. Aminoplastics, Iliffe, London, UK. 48. Phillips, L. N. and Parker, D. B. V. 1964. Polyurethanes: Chemistry, Technology and Properties, Iliffe, London, UK. 4-160 Plastics Technology Handbook q 2006 by Taylor & Francis Group, LLC 5 Polymers in Special Uses 5.1 Introduction There are a number of polymeric materials that distinguish themselves from others by virtue of their limited use, high prices, or very specific application or properties. The expression specialty polymer is, however, slightly ambiguous to use for such materials as the definition covers any polymeric material that does not have high volume use. There are thus some materials that were originally developed as specialties have now become high volume commodities, while a number of materials developed some years ago still fall into the specialty category. Some examples of the latter are polytetrafluoroethylene, polydimethyl siloxane, poly(vinylidene fluoride), and engineering materials such as poly(phenylene oxide), poly(phenylene sulfide) (PPS), polyether sulfone, polyether ether ketone, and polyetherimide. In this chapter, attention is focused on a number of polymers that are either themselves characterized by special properties or are modified for special uses. These include high-temperature and fire-resistant polymers, electroactive polymers, polymer electrolytes, liquid crystal polymers (LCPs), polymers in photoresist applications, ionic polymers, and polymers as reagent carriers and catalyst supports. 5.2 High-Temperature and Fire-Resistant Polymers Compared to traditional materials, especially metals, organic polymers show high sensitivity to temperature [1–3]. Most importantly, they exhibit very low softening points, which is attributed to the intrinsic flexibility of their molecular chains. Thus, whereas most metals do not soften appreciably below their melting points, which may be 10008C or higher, many polymers commonly used as plastics such as polyethylene, polystyrene, and poly(vinyl chloride), soften sufficiently by about 1008Ctobeofno use in any load-bearing applications. The poor thermal resistance of common polymers has greatly restricted some of their application potential. In two particular application areas, namely electrical and transport applications, this restriction has long been particularly evident. Owing to their unique electric insulation properties, polymers are widely used in electrical products. However, many electrical components are required to operate at high temperatures, for example, electric motors and some domestic appliances. Another characteristic property of polymers, namely their high specific stiffness and strength (which are due to their low density, especially when used in fiber-reinforced composite materials), has led to the use of polymers in transport applications, especially in aerospace industries, where weight saving is of vital importance and materials cost is secondary. However, here again many applications also demand high temperature resistance. 5-1 q 2006 by Taylor & Francis Group, LLC TABLE 5.5 Schematic Representation of the Organization of a Side-Chain Liquid Crystal Polymer (SCLCP) [4] Flexible backbone Functional unit Functional unit Flexible tail Cyclic unit Cyclic unit Bridging group Spacer SCLCP ≡ Flexible Backbone Functional Unit Spacer Cyclic Unit Bridging Group Flexible Tail CHRCH None None 1,3 1,4 None None SiR O O ( ) CH 2 n X X Me Ph Cl CO O R SiR SiR 2 OO CO O ( CH 2 CHR ) n n = 1,2,3 CR CR OR PN OCO NR' R NR' 1,4 1,5 2,6 CC CN SRS (Cholesteryl) CR NO SiR 2 O NO N CR N N CR Source: Cowie, J. M. G. 1991. Polymers: Chemistry and Physics of Modern Materials. Blackie, Glasgow and London. q 2006 by Taylor & Francis Group, LLC Polymers in Special Uses 5-15 . 1964. Aminoplastics, Iliffe, London, UK. 48. Phillips, L. N. and Parker, D. B. V. 1964. Polyurethanes: Chemistry, Technology and Properties, Iliffe, London, UK. 4-160 Plastics Technology Handbook q. 1964. Aminoplastics, Iliffe, London, UK. 48. Phillips, L. N. and Parker, D. B. V. 1964. Polyurethanes: Chemistry, Technology and Properties, Iliffe, London, UK. 4-160 Plastics Technology Handbook q. 2005. Polym. Int., 54, 981. 40. Kohan, M. I. ed. 1973. Nylon Plastics, p. 201. Wiley, New York. 41. Nelson, W. E. 1976. Nylon Plastics Technology, Newnes-Butterworths, London, UK. 42. Black, W.B.