1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Smithells Metals Reference Book Part 2 ppsx

100 268 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 100
Dung lượng 2,75 MB

Nội dung

Ir 77 Pt 78 Au 79 Hg 80 TI 81 Pb 82 Bi 83 Po 84 At 85 Rn 86 Fr 87 Ra 88 Ac 89 Th 90 Pa 91 U 92 63.40 46.M 65.68 47.82 67.84 49.48 69.90 51.07 71.77 52.52 73.74 54.07 76.60 56.26 79.42 58.44 81.40 60.05 82.38 60.91 83.36 61.77 85.43 63.47 86.25 64.30 88.04 65.81 90.63 67.91 93.18 69.94 71.32 52.10 73.93 54.02 76.t9 55.87 78.46 57.62 80.49 59.23 82.63 60.93 85.78 63.37 88.86 65.77 90.97 67.53 91.97 68.44 92.98 69.35 95.17 91.20 95.95 72.04 97.82 73.66 88.60(i1) 89.92(1,) 78.17(L) 75.95(L’) 80.33 58.98 83.09 61.12 85.67 63.16 88.15 65.11 90.37 66.87 92.67 68.75 96.13 71.44 99.50 74.1 1 76.00 76.96 77.92 79.91 80.75 82.48(L) 72.19(i1,) 74.20(1,,) 87.38(L) 101.7 102.7 103.7 106.0 106.7 97.75(i1) 84.95(L) 115.6 119.2 122.5 125.7 128.4 131.2 135.7 103.0 139.9 106.5 108.8(L) 122.5(1,) 109.8(L) 110.8(L) 113.1(L) 86.32 89.24 91.96 94.51 96.90 99.31 122.1(1,) 91.18(In) 95.03(1,,) 97.50(1,) 102.1(1,) 100.3(In) 75.07(l,,) I03.2(1,,) 77.4(111) 105.9(i,,) 79.70(1,,) 168.4 131.7 178.5 140.0 188.3 148.1 198.8 156.8 206.7 163.6 215.4 171.1 226.8 180.0 237.7 190.3 249.2 200.2 249.0 201.1 258.8 210.1 266.6 217.8 273.6 224.7 278.6 230.6 290.1 240.2 294.9 246.7 201.9 155.3 213.7 164.8 224.9 173.9 237.1 183.8 245.7 191.2 255.6 199.6 268.3 210.3 280.3 220.6 293.1 231.6 291.9 231.7 302.2 241.1 309.9 248.9 314.6 255.8 320.5 261.1 332.8 272.2 336.7 275.2 - *Reproduced by permission from the International Tables for X-ray Crystallagrapby. 242.9 188.3 256.3 199.4 269.2 210.0 283.2 221.6 292.5 229.9 303.1 239.2 317.4 251.5 330.3 263.1 344.4 275.5 341.5 274.7 351.8 284.8 358.7 292.7 364.3 299.5 366.1 304.0 316.0 320.3 * 4 9 378.6 E 25 380.7 5 e 292.8 229.1 308.2 242.0 322.7 254.3 338.6 267.7 348.2 276.8 359.5 287.2 375.0 301.0 388.5 313.7 403.4 327.4 397.8 325.1 407.2 335.5 412.0 342.7 415.4 348.8 353.7 279.6 370.9 294.5 386.9 308.6 404.8 324.0 414.0 333.6 425.6 344.7 441.5 359.9 454.6 373.4 469.6 388.1 459.8 383.4 466.7 393.1 467.3 398.6 427.3 342.1 451.9 359.0 463.2 374.8 482.7 392.3 490.3 401 .I 500.5 413.0 516.2 4292 527.3 442.5 540.7 457.5 524.3 448.6 526.0 4562 515.6 419.0 736.1 623.5 535.0 437.6 552.3 454.7 572.6 474.0 576.1 481.9 583.1 492.2 596.0 508.1 602.0 519.5 611.0 533.2 749.6 641.7 758.7 656.8 773.1 675.9 1 W v, 4-36 4.4 X-ray results 4.4.1 Metal Working X-ray analysis of metallic materids Table 4.18 GLIDE ELEMENTS AND FRACTURE PLANES OF METAL CRYSTALS LOW Eleuared Most closely temperatures temperatures packed Glide Glide Glide Glide Lattice Lattice Fracture Structure Metal plone direction plane directian plane direction plane &Cu-Zn (110) a-Fe-Si, (110) 5% Si (112)(?) 1 Hexagonal, Mg close zn packed Cd Zn-Cd ZnSn Tetragonal PSn (110) (white) (100) (101) (121) hedral Sb (111) Bi (1 11) Rhombo- As - Hg (100) and Approximately 450°C l(111) l[lOIl - (100) [loll 2(100) 2[1Oo] - 3(110) 3[112] - - - 1 - ClOi] - [Ili] - 11117 - [lli] - c1m - [iii] (110) [iii] - Ciii] (123) [iii] - - - [lli] (110) [llfl - - - [lli] - l(101) l[lll] 2(100) 2[100] (001) z} 3(111) 3[110] I - - - I - (123) [111] - - - - - - - - - - - - - - - - [Ool] Approximately 150°C 1(100) 1[001] - [Ool] (110) [TI11 2(11O) 2[111] - - - - 3(101) 3[100] - - 4[101] - ClOi] - - complex Hexagonal Te (ioio) ~11~01 - - (lOT1) - (ioio) 4.4.2 Crystal Structure Crystal structural data for free elements are given in Table 4.25. The coordination number, that is the number of nearest neighbours in contrast with an atom, is listed in column 4 and the distances in column 5. In complex structures, such as a Mn where the coordination is not exact, no symbol is used and the range of distances between near neighbours is given. X-ray results 4-37 TaMe 4.19 PRINCIPAL TWINNING ELEMENTS FOR METALS - Twinning Second Crystal Twinning direerion, undisrorted Direction structure plane, Kl VI K2 v2 Shear From C. S. Barrctt and T. B. Magplski, ‘Structurr of Metals’.’ A co-ordination symbol x in column 4 indicates that each atom has x equidistant nearest neighbours, at a distance from it (in kX-units) specified in column 5. The symbol x, y indicates that a given atom has x equidistant nearest neighbours, and y equidistant neighbours lying a small distance further away. These distances are given in column 5. In complex structures, such as z-Mn, where the co-ordination is not exact, no symbol is used, and the range of distances between near neighbours is given in column 5. The Goldschmidt atomic radii given in column 6 are the radii appropriate to 12-fold co- ordination In the case of the f.c.c. and c.p.h. metals the radius given is one-half of the measured interatomic distance, or of the mean c?f :he two distances for the hexagonal packing. In the case of the b.c.c. metals, where the measured interatomic distances are for 8-fold co-ordination, a numerical correction has been applied. In some cases, where the pure element crystallizes in a structure having a low degree of co-ordination, or where the co-ordination is not exact, it is possible to find some compound or solid solution in which the element exists in 12-fold co- ordination, and hence to calculate its appropriate radius. In a few cases no correction for co- ordination has been attempted, and here the figures, given in parentheses, are one-half of the smallest interatomic distances. It should be emphasized that the Goldschmidt radii must not be regarded as constants subject only to correction for co-ordination and applicable to all alloy systems: they may vary with the solvent or with the degree of ionization, and they depend to some extent on the filling of the Brillouin zones. Ionic radii vary largely with the valency, and to a smaller extent with co-ordination. The values given in column 8 are appropriate to &fold co-ordination, and have been derived either by direct measurement or by methods similar to those outlined for the atomic radii. All are based, ultimately, on the value of l.32A obtained for Oz+ ions by Wasastjerna,28 using refractivity measurements. Ionic radii are also dected by the charge on neighbouring ions: thus in CaF, the fluorine ion is 3% smaller than in KF, where the metal ion carries a smaller charge. It is not possible to give a simple correction factor, applicable to all ions: the effect is specific and is especially marked in structures of low co-ordination. Figures in arbitrary units indicating the power of one ion to bring about distortion in a neighbour (its ‘polarizing power’), and indicating the susceptibility of an ion to such distortion (its ‘polarizability’) are given in columns 9 and 10, respectively. The crystal structures of alloys and compounds are listed in Chapter 6, Table 6.1. Other sources of data are references 7 and PearsonZ3 which is particularly valuable as the variation of lattice parameters with composition as well as structure is given. Structures are generally referred to standard types which are listed in Pearson and in Table 62 in Chapter 6. Further information on pure crystallography can be obtained from International Tables For X-ray Cry~tallography.~ Table 4.20 ROLLING TEXTURES IN METALS AND ALLOYS 2 - 00 Texture Texture 2 3 Metal or alloy I 2 3 Y Metal or alloy I - Facecentred cubic cu cu CU' Cu 70Yo-211 30% Cu 70Yo-Zn 30%* Cu+12 at. % AI Cufl.5 at. %AI Cu+3 at. % Au Cu +29.6 at. % Ni Cu+49 at. % Ni Ni Au Au+ 10 at. % Cu A1 AI A1+2 at. % Cu Al+ 1.25 at. % Si A1+0.7 at. % Mg Ag Pb+2 wt % Sb Body-centred cubic a-Fe a-Fe Mo W V Fe+4.16 wt % Si Body-centred cubic (continued) Fe+35 wt YO Co Fe+35 wt % Ni ,&Brass Hexagonal close-packed Be, 5 = 1.5847 a Ti, 5 = 1.5873 a Zr, 5 = 1.5893 a Mg, 5 = 1.6235 /I-Co, 5 = 1.623 a a Zn, E= 1.8563 Cd, 5 = 1.8859 a a (11 1)/C1121 (1 12)K110] Mg+AI (<4% by wt) Mg+2% Mn (1 W[lfOl (1 11)/C1121 Scatter increases with Si content Mg+0.4% Co Rhombohedral a-U 6 2. F (OOOI) tilted approx. 2MO" round RD out of rolling plane; ; [IOiO] parallel RD n (0001)/[11m (OOO1) tilted 30-40' round RD out of rolling plane; [IOiO] parallel RD (OOO1) parallel rolling plane (OOOI) parallel rolling plane (OOO1) tilted 2O"round transversedirection out ofrollingplane (W1 )/C~OfOJ (Oool) tilted - 15" out of rolling plane around transverse direction - * Straight-reverse rolling treatment. From A. Taylor 'X-ray Metallography', John Wiley and Sons Inc. X-ray results 4-39 ‘Fable 421 FIBRE TEXTURES OF DRAWN AND EXTRUDED WIRE* Metal Facecentred cubic Al, Cu Ni, Pd, Ag, Au, Pb, Cu+O.47%Ag, Cu+0.45% Sb, CU+ l.O%As, Cu+0.009%Bi Cu-Zn (<2.35%Zn) Cu-Ni (<32%Ni), Cu-A1 (<2.16%A1), Cu-AI (>4.4%Al), Cu-Zn (r4.8%Zn) a-Brass, a-Bronze, Ni+20% Cr, Ni-Fe, austenite, 18/8 and 12/12 Cr-Ni steel Body-centred cubic a-Fe, 8-Brass Ma, a-Fe, W, V, Nb, Ta Hexagonal close-packed klg, 2 = 1.6235 a Zn, = 1.8563 Ti, 5 = 1.5873 a a ParalIel ta drawing direction Parallel to extrusion 1 2 direction __-__ - C~lOl Cllll [loo1 [llO], [1!3] and [llO] Cllll w11 ClOOl [lll]and[100] CoO01ll [IlZO] [ioio] [Oool] approx. 72“ to drawing direction [ioio] [lOil] Zr, = 1.5893 W@lll a Se. F=l.i31 [llZOJ a *After E. Schmid. From A. Taylor, ‘X-ray Metallography’. Table 4.22 TEXTURES IN ELECTRODEPOSITS* Metal Fibre textures A u Fe co Cr Sn Cd Bi *From C. S. Bamtt, Structure of Metals’, McGraw-Hill, New YoIk, 1943. 640 X-ray analysis of metallic materials Table 4.23 TEXTURES IN EVAPORATED AND SPUTTERED FILMS' Metal deposited Texture Technique Face centred cubic Ag [ill]; [IOo]; [IlO] Evaporated AI [Ill]; [lOO]; [llO] Evaporated Au [110]:[111] Evaporated Pd, Cu, Ni Cllll Evaporated Body centred cubic Fe c1111 Evaporated Mo c1101 Evaporated Hexagonal Cd, Zn c@-w Evaporated Rhombohedral Bi [Ill]: [llO] Evaporated Pt c1@31; c1111 sputtered ~ 'From C. S. Barrett, 'Structure of Meials', McGraw-Hill, New York, 19432 Table 434 TEXTURES OF CAST METALS' Structure Metal Normal to cold surface Body centred cubic Face centred cubic Hexagonal close packed7 Rhombohedral Tetragonal Fe-Si (4.3% Si) 8-Brass Au Pb a-Brass Cd(c/a= 1.885) Zn(c/a= 1.856) Mg(c/a= 1.624) Bi 8% Columnar grains, [OOl>(iOO) 11 to surface Chilled surface, [Ool] Columnar grains, [Wl]; (100) I[ to surface Chilled surface, [Ool] Columnar grains, [l00]; (205) 11 to surface and (001) 37' from it * From C. S. Banctt, 'Structure of Metals', McGmw-Hill, New York, 1943. t Three indias system; equivalent idees in four idices systems are as follows: (oOl)=(aool)=basal plane; [l~]-~ZTTO]=diegonal axis of type I=close packed TOW of atoms in basal plaac; [la01 normal to surface=(lZO) parallel to surface. The density of a material is calculated from crystallographic data with the relation nA p =- ' VN where n is the number of atoms contained in the unit cell of volume V, A is Avogadro's number and A is the mean atomic weight of the atoms. A is computed from the atomic percentages pi, pz, etc, of the elements forming the alloy and their atomic weights A,, A,, etc, using the formula X-ray results 4-41 Table 4.25 ATOMIC AND IONIC RADII I 2 3 6 7 4 5 As elmt CO- ordina- Inter- tion atomic No. distances 6, 6 - 8 9 10 In ionic crystals Gold- Schmidt Polarizing Polariza- ionic radii power bility 1.54 0.62 - - I - 0.78 1.64 0.075 0.34 17.30 0.028 02 - 0.014 Gold- Schmidt at. radii 0.46 1.57 1.13 0.97 0.77 0.71 0.60 1.60 1.92 1.60 1.43 [1.17] - - - c1.091 State of ionization Type of Symbol structure H c.p.h He - Li b.c.c. Be c,p.h. B - Atomic number I H - 8 3.03 6, 6 2.22; 2.28 Li + Be'+ B3+ 4 1.54 3 1.42 - - 6 7 8 9 10 I1 12 13 14 15 e+ Ns+ 0'- F- - - 10.2 - 0.142 - - 1.32 1.15 3.1 1.33 0.57 0.99 - - - N cub. 0 orthorh. F Ne f.c.c. Na b.c.c. Mg c.p.h. AI f.c.c. Si d. P orthorh. - - - 12 3.20 8 3.71 6, 6 3.19; 3.20 12 286 4 2.35 3 218 Na+ Mg2+ ~13 + { $; PS + 0.98 1.04 0.21 0.78 3.29 0.12 0.57 9.23 0.065 1.98 0.39 26.30 0.043 0.3-0.4 - I 1.74 0.66 7.25 1.81 0.30 3.05 1.33 0.57 0.85 1.06 1.78 0.57 - - 0.34 51.90 - - - - { c1- S f.c. orthorh. CI orthorh. A f.c.c. - 2.12 1 2.14 12 3.84 8 4.62 12 3.93 6.6 3.98; 3.99 I2 3.20 6, 6 3.23; 3.30 6, 6 291; 2.95 c1.041 c:.on 1.92 2.38 1.97 2.00 1.60 1.64 1.47 16 17 18 19 20 - K' Ca' + sc3 + Ti'' Ti3 + Cr' + Cr6 + K b.c.c. 21 0.83 0.76 0.69 0.64 0.65 0.61 -0.4 0.64 0.3 -0.4 0.91 0.70 0.52 22 Ti c.p.h. 23 V b.c.c. 8 2.63 8 2.49 6, 6 271; 2.72 - 2.24 - 2.96 - 236 - 2.68 8, 4 258; 2.67 8 248 12 2.52 6, 6 2.49; 2.51 12 2.51 6, 6 2.49; 2.49 12 249 12 255 6, 6 2.66; 2.91 - 2.43 - 2.79 4 244 3, 3 2.51; 3.15 2, 4 2.32; 3.46 1 2.38 12 3.94 1.36 1.28 1.36 c1.181 1.37 1.28 1.26 1.25 1.26 1.25 125 128 1.37 1.35 1.39 c1.251 [l.l2] W6l [1.19] 1.97 b.cc. (a) Cr {c.p.h. (8) cub. (a) Mn ( (0) f.c.t. (y) 24 25 0.87 - - 0.67 0.82 0.65 0.78 - - 0.96 0.83 2.90 - 0.62 7.80 - 0.44 20.66 - 0.69 -0.4 - 1.91 0.55 6.4 0.3-0.4 - - 1.96 026 4.17 - - - - - - - - - - - 26 27 28 29 N) 31 32 33 34 35 36 co .z$&h(l;;' Ni {f.c.c. (J?) c.p.h. (a) c11 r.c.c. Ga orthorh. Ge d. As r. Se hex. Br otthorh. k f.c.c Zn c.p.h. 642 Table 4.25 ATOMIC AND IONIC RADII-continued X-ray analysis of metallic materials 1 2 3 4 5 6 7 8 9 10 As ekment In ionic crystals CO- ordina- Inter- Gold- Gold- Atomic Typeof rion atomic schmidt State of schmidt polarking polariza- number Symbol structure No. distances at. radii ionization ionic radii power bility 37 Rb 38 Sr 39 Y 40 Zr 41 Nb 42 Mo 43 Tc 44 Ru 45 Rh 46 Pd 47 Ag 48 Cd 49 In 50 Sn 51 Sb 52 Te 53 I 54 xe 55 cs b.c.c. f.c.c. c.p.h. { 2:; bc.c b.c.c. c.p.k fJ2.C. f.c.c. f.c.c. f.c.t. - c.p.h. cira. r. hex. orthorh f.c.c. bee. 4.87 4.30 3.59; 3.66 3.16; 3.22 3.12 285 2.72 2.64, 2.70 2.68 2.75 2.88 2.97; 3.29 3.24; 3.37 2.80 3.02; 3.18 290, 3.36 286; 3.46 270 4.36 5.24 - 251 2.15 1.81 1.60 1.61 1.47 1.40 1.34 1.34 1.37 1.44 1.52 1.57 1.58 - - 1.61 C1.431 C1.361 2.18 270 1.49 1.27 1.06 0.87 0.69 0.69 0.68 0.65 0.65 0.68 0.65 0.50 1.13 1.03 0.92 2.15 0.74 0.90 2.11 0.89 2.20 0.94 1.65 - - 0.45 1.24 2.67 5.28 - 10.50 - - - - - - - 0.78 1.88 3.54 7.30 - - 0.45 0.21 - - - 0.37 4.5 X-ray fluorescence X-ray fluorescence occurs after an electron has been ejected from a shell surrounding the nucleus of an atom. The X-radiation is characteristic of the atom from which the electron has been ejected, and hence provides a means of identifying the atomic species. The ejection of an electron may be induced by irradiating the sample with photons (X or y-rays) electrons, protons, charged particles or, indeed, any radiation capable of creating vacancies in the inner shells of the atoms of interest in the sample. The relative merits of each technique are given in Table 4.26. A further comparison of X-ray or radio-isotope sources for X-ray fluorescent spectroscopy is given in Table 4.27. Details of suitable available isotope sources are given in Table 4.28. Analysis of fluorescent X-rays is achieved by wavelength dispersion using crystal analyser (or several in a multichannel instrument), or by energy dispersion with solid-state detectors. Wavelength dispersion offers more accurate quantitative analysis, especially for the detection of small concentrations of elements where X-ray spectra from several elements overlap. Energy dispersion is preferred when rapid or quantitative analysis is required of an unknown sample. Examples of the detection limits for X-ray excited samples are given in Tables 4.29 and 4.30, and for ion excited samples in Table 4.31. Accuracy levels for elemental analysis are typically: for X-ray excitation for electron and ion excitation better than 1%. 1-2%. These values can be improved with very carefully calibrated standards, but are frequently much worse, especially when the specimen surface is rough. Unlike X-ray diffraction, powdered samples are the most difficult sample form to analyse. X-ray fluorescence 4-43 Table 4.25 ATOMIC AND IONIC RADII-continued I 2 3 4 5 6 7 8 9 10 As element In ionic crystals CO- ordina- Inter- Gold- Gold- Atomic Type of tion atomic schmidt Stage of schmidt Polmizing polariza- number Symbol structure No. distances at. radii ionization ionic radii power bility 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 a2 83 84 85 86 87 88 89 90 91 92 93 94 95 96 Ba La Ct: Pr Nd - Sm Eu Gd Tb DY Ho Er TITI Yb Lu Hf Ta W Re OS Ir Pt Au Hg T1 Pb Bi Po At Rn Fr Ra Ac Th Pa U NP Pu Am Cm b.c.c. c.p.h. f.c.c. c.p.h. [hex. f.c.c. f.c.c. hex. - - b.c.c. c.p.h. c.p.h. cp.h. c.p.h. c.p.h. c.p.h. f.c.c. c.p.h. c.p.k b.c.c. C.D.4. c.p.h f.c.c. f.c.c. f.c.c. r. f.c.c. r. monocl. - - - - - f.c.c. - orthorh. - - - c 4.34 3.72; 3.75 3.75 3.63; 3.65 3.63 3.63; 3.66 3.64 3.62; 3.65 - - 3.96 3.55; 3.62 3.51; 3.59 3.M; 3.58 3.48; 3.56 3.46; 3.53 3.45; 3.52 3.87 3.44; 3.51 3.13; 3.20 2.85 274 12; 2, 4 2.82; 2.52 282 2.73; 276 2.67; 2.73 2.71 2.77 288 3.00 3.40; 3.45 3.36 3.49 3.1 1; 3.47 2.81 - - - - - 3.60 - 2.76 - I - - 2.24 1.87 1.87 1.82 1.82 1.83 1.82 1.82 - - 204 1.80 1.77 1.77 1.76 1.75 1.74 1.93 1.73 1.59 1.47 1.41 1.41 1.38 1.35 1.35 1.38 1.44 1.55 1.71 1.73 1.75 1.82 c1.41 - - - - - 1.80 - C1.381 - - - - 1.43 1.22 1.18 1.02 1.16 1.00 1.15 - 1.13 1.13 1.1 1 1.09 0.89 1.07 1.05 1.04 1.04 1 .oo 0.99 0.84 0.68 0.68 0.65 - 0.67 0.66 0.52 0.55 1.37 1.12 1.49 1.06 2.15 1.32 0.84 1.20 - - - - 1.52 1.10 - - 1.05 - - - - [...]... Abm2 Abm Aba2 Aba Fmm2 Fmm Fdd2 Fdd 2 Class c,, m Imm2 Ima Iba2 2 m P-1 Imm Ima2 2 Pm Iba 2 P- C CIm 22 2 (short 22 )- 2 P-L P 222 2 P 222 , cm P2 12, 2 2 c- p2 121 21 e 222 c 222 , F 222 Orthorhombic system Class mm2 (short m )C m- , Pmm2 Pmc2, Pmm Pmc Missing spectra Short P d P1 SchoenPies Class nun2 (short mm) C,, continued Triclinic system Class Space group lfermann-Mauguin c, : - 122 2 c:, hOr 12, 2 121 5-8 Crystallography... 14mm 14cm 14cm 14,md I4md 14,cd 14cd EO Okf, hhl EO 0,kf Class 422 (short 42) P 422 P 42 P4 422 P 422 P4 ,22 P4 ,2 P4 ,22 P4 ,2 P 42, 2 P 42, P 422 12 P 422 , P4 121 2 P4 121 hL1, @O, h z 4 P4 321 2 1 422 P4 32, 1 422 hkl, hkO OE, 14 ,22 14 ,2 EO, 2 hh! 1 hl & hhl Okl - w - Cubic system Class 23 -T 4 2 2 (short 4/mmm)-D4h mmm Class p mmm ~ 4 / m m mD : ~ - P23 T’ - P2,3 7-4 hoo 5-10 Crystallography Tabk 53 THE HERMANN-MAUGUIN SYSTEM... 7.587 3. 427 ; 3 .27 9 3.16 52 4.446; 7 .28 9 11.64 7.36; 4 .22 7.61 21 9 26 27 22 0 8.9 126 ( ~ 7 4 2 ° C ) 6.31 52 ( 724 -1 191"C)(A =20 ) 12. 58 (A=160) 3.860 3.080 7.680 ( M = 8 ) 8.808; 12. 521 (M= 12) 8.541; 4.785 4 .23 ; 6.91 7 .27 6; 4 .25 6 7.14 4. 825 ; 7.917 8.88; 4.54 5.03; 8 .22 8.74; 495 12. 52 5.48; 8.95 7.16 10 .29 ; 524 8. 92; 4.61 4.87; 7.96 4.86; 7.94 8.86; 4.59 2. 738; 4.393 2. 7609; 4.458 4.35; 7.09 11.56 5 .27 0 1;... 3mZ and flm) -D,, 2 CFT C3ml m C6mm Class 622 - ca I 06 C31m DB - C6 ,22 C6 32 Df osl C 622 C6 42 D} : D: 00i C6 ,22 C6 12 C6 ,22 C6 52 C3Cl 2 CR-m C 62 C6 ,22 C6 ,22 c& C 622 CTi- C31c -2 R3- Rjm m R3c Hexagonal system class 6-Cah C6 Class 6 C6 C6 C63 C 62, C64 C61, C65 6 Class C6, M 6 Cm 6 CA m D : 622 Class -(short 6/mmm)-Deh mmm - C-6 - 2 C6fmmm D& 2 mmm - 6, 2 2 C- - - C6/mmc D& m mc khi 22 C-6, - - C6fmcm... the A15 type holds only for the U positions 3. 024 4.39; 7.14 7 .28 ; 4 .21 6.49; 3.35 (M =2) 5.599; 82. 84" (M=l) 7.41; 10.84 7.34; 4 .26 3.3004 3.3030 6.01; 4.89 7.39; 10.74 6.51 5 .28 ; 8.65 6 .20 5; 6.597; 13.63 RJm Refs 16 17 18 19 20 21 5 21 21 21 21 6 22 21 7 21 8 21 9 21 9 24 24 25 22 0 Structures o metals, metalloids and their compounds f 6-5 Table 6.1 STRUCTURES OF METALS, METALLOIDS AND THEIR COMPOUNDS-continued... 9. 621 3.88; 3. 72 3.84; 1.15 3.84 3.85; 3. 12 2.734 1; 4.391 8 11.31; 10.63; 8.48 96" 32' 3.07 5.18; 8.51 7.4974 9.934; 5.189 4.677 9.686; 5.0 12 3.83 92 7.545 7.700 3. 822 3.911 3.865 3.943 1 24 3 25 2 24 4 40 39 24 5 24 6 24 1 24 8 24 7 24 8 24 9 3 42 3 42 3 42 341 39 25 0 40 39 41 42 41 24 7 25 0 Structures o metals, metalloids and their compounds f 6-9 Table 6.1 STRUCTURES OF METALS METALLOIDS AND TUHR COMPOUNDS-contimred... C156 6.417; 5 .24 1 Ze2Ni C16 ZrNi, 6. 925 C15 ZrNi, 5.309: 4.303 W,, 3 .26 8; 9.937; 4.101 ZrWi 086 Hf,Ni 6.405; 5 .25 2 C16 HN fi Bf 3 .21 8; 9.788; 4.117 ThNi, D2d 4. 92; 3.99 ThNi, 3.964; 3.8 52 C 32 6.783 C15 UMi, 4.97; 8 .25 C14 UNi, 10.37; 5 .21 D2c U,Ni PUN& m o n d 62Jm 4.87; 8.46; 10 .27 ; 8- 1M)" (M=6) 6 .22 ; 30" 4 '(M=3) rhomb 4 PuNi, 3.59; 10 .21 ; 4 .22 PuNi Bf 3.54; 7 .22 mi3 Do21 2. 61; 3.54; 2. 57 orh VNi,... Pnnw D2d D2d D2d Ll4 Cllb E93 E93 L2U B11 Ae Doa CllB Llo CllB C 32 C16 C15b 41 39 341 341 43 24 8 39 25 1 3.6146 2. 7 02 intermediate phases during 2. 79; 2. 54 2. 54; 2. 54; 3 2 q 85" 25 ' precipitation 5.94 [report At-type with a -2. 79) (Mischw, K o ~ s o I a p o ~ ~ ) to 5.97 4.179; 2. 551 3.318 6.51; 5. 62 7.03 527 : 9.05: 18 .21 5.10; 4.08' 5.17; 4. 12 253 7.30; 4.30; 6.36 25 4 4.43; 7.05; 7.45 25 5 8. 12; 5.1 02; ... orh VNi, 8.91; 4.64 D8b V,,Nil, W 2 2 3. 62; 7.41 NbNi, Wa 5.11; 4 .25 ; 4.54 TaNi, A2(tetr deformed) (cia = 1.09; metastable intermediate by quenching) Cr,Ni 8. 82; 4.58 08b CrNi 5. 72; 3.56 Dla MoNL 5.064; 4 .22 4; 4.448 WQ MoNi, 2. 54; 4.18 A3 MoNi WNi, 5.73; 3.55 Dla R4s - 1 I 1 22 1 23 1 23 3 23 4 23 2 23 6 ~~ 38 23 8 23 9 24 0 24 1 24 2 6-8 Crystai chemistry Table 6.1 STRUCTURES OF METALS, METALLOIDS AND THEIR COMPOUNDS-continued... 7.15 (M =2) Gd,Fe, orthorh GdFe, hex 5.15; 6.64 ( M = 2 ) GdFe, hex 4. 92; 4.11 ( M = l ) GdJe,7 hex 8.39; 8.53 (M =2) GdFe, c15 7.391 Y Fez C15 7.357 ( M = 8 ) TiFe, C14 4.77; 7.75 TiFe E2 2. 976 11.15 TiFe,O E93 11 .28 Ti,Fe,O E93 Ti,Fe E 92 11.31 (Duwez, Taylor) 28 29 30 22 1 22 2 31 22 3 22 4 - 22 5 22 1 32 33 66 Crystal chemistry Table 6.1 STRUCTURES OF METALS METALLOIDS AND THEIR COMPOUNDS- conrimed Elenrmt . 156.8 20 6.7 163.6 21 5.4 171.1 22 6.8 180.0 23 7.7 190.3 24 9 .2 20 0 .2 24 9.0 20 1.1 25 8.8 21 0.1 26 6.6 21 7.8 27 3.6 22 4.7 27 8.6 23 0.6 29 0.1 24 0 .2 29 4.9 24 6.7 20 1.9 155.3 21 3.7. 22 4.9 173.9 23 7.1 183.8 24 5.7 191 .2 25 5.6 199.6 26 8.3 21 0.3 28 0.3 22 0.6 29 3.1 23 1.6 29 1.9 23 1.7 3 02. 2 24 1.1 309.9 24 8.9 314.6 25 5.8 320 .5 26 1.1 3 32. 8 27 2 .2 336.7 27 5 .2. 2. 67 8 24 8 12 2. 52 6, 6 2. 49; 2. 51 12 2.51 6, 6 2. 49; 2. 49 12 249 12 255 6, 6 2. 66; 2. 91 - 2. 43 - 2. 79 4 24 4 3, 3 2. 51; 3.15 2, 4 2. 32; 3.46 1 2. 38 12 3.94 1.36 1 .28 1.36

Ngày đăng: 10/08/2014, 12:21

TỪ KHÓA LIÊN QUAN