Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 26 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
26
Dung lượng
448,23 KB
Nội dung
aged [138]. The results are represented by a continuous curve for each geo- metry (symbols). Each point of a curve represents a location r along the radius in the smallest cross-section. Only one point of each curve fulfills the failure criterion for ductile fracture, so that the envelope of all curves represents the failure criterion. For quasi-static loading (Fig. 67a), the envel- ope is described by the Hancock=M ackenzie relation and for dynamic load- ing (Fig. 67b) by Eq. (111). The comparison between the failure criterions determined for quasi- static and dynamic loading is represented in Fig. 68b in addition to that Figure 67 Local equivalent plastic strain at fracture as a function of the degree of multiaxiality ðs m =s v Þ along the specimen radius at the narrowest cross-section of differently notched specimen of aluminum AA7075 highly over aged under (a) quasi- static, and (b) dynamic loading. (From Ref. 138.) Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. Figure 69 The transition temperature shift due to an increase in multiaxiality M ¼ s m = ss, prestrain e and rate of elongation. Figure 70 Influence of deformation rate and strength on the transition temperature shift [141]. (a) J-integral-temperature curves for steel 15NiCuMoNb5. (b) Transition temperature shift as a function of yield strength. (c) Measured and calculated values for the transition temperature as a function of the machine ram velocity v. " Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. If this is the case, the brittle fracture condition is simply assumed to be s à f À s I ¼ 0. The microscopic cleavage strength s à f can be considered as pro- portional to the modulus of elasticity EðTÞ. The transition temperature T t from brittle to ductile fracture can be determined by the intersection of the functions s à f ðTÞ and ssðTÞ for given values of multiaxiality M, prestrain e, and strain rate _ ee. A variation of these parameters results in a shift of the transition temperature which is determined by DT ¼ ð@s I =@MÞDM þð@s I =@eÞDe þð@s I =@ _ eeÞD _ ee ðds à f =dTÞÀð@s I =@TÞ ð114Þ where ds à f =dT % dE=dT. However, this equation seems to overestimate the transition temperature shift. An alternative procedure for the determination of the effect of the loading rate on the transition temperature, which describes the experimental results more accurately, was introduced by Falk and Dahl [141]. This procedure needs the knowledge of a single value T t1 for the transition temperature at a known loading rate as well as the relation between flow stress, strain rate, and temperature determined, e.g. in tension tests. According to their analysis, the transition temperature for another strain rate is determined by the intersection of the function mðTÞ and T t1 þ DT=ð@m=@TÞ T¼0 where m ¼ @ ln s=@ ln _ ee is the strain rate sensitivity. According to this method, the transition temperature shift can be expressed by DT ¼ @m @T T¼0 À @m @T ! À1 @m @ ln _ ee D ln _ ee ð115Þ Figure 70 shows experimental results determined and their description by Eq. (115). REFERENCES 1. Ludwik, P. Elemente der technologischen Mechanik; Springer-Verlag: Berlin 1909. 2. Hollomon, J.H. Tensile deformation. Trans AIME 1945, 126, 268–290. 3. Swift, M.W. Plastic instability under plane stress. J. Mech. Phys. Solid 1952, 1, 1–18. 4. Voce, E. The relationship between stress and strain for homogenous deformation. J. Inst. Metals 1948, 74, 537–562. 5. Mecking, H.; Kocks, U.F. Kinetics of flow and strain hardening. Acta Metal 1981, 29, 1865–1875. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. 6. Follansbee, P.S.; Kocks, U.F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metal 1988, 36 (1), 81–93. 7. Tome, C.; Canova, G.R.; Kocks, U.F.; Christodoulou, N.; Jonas, J.J. The relation between macroscopic and microscopic strain hardening in f.c.c. polycrystals. Acta Metal 1984, 32, 1637–1653. 8. Voehringer, O. Gefu ¨ ge und mechanische Eigenschaften; DGM-Informations- gesellschaft Oberursel: Germany 1990. 9. Campbell, J.D.; Ferguson, W.G. The temperature and strain rate dependence of the shear strength of mild steel. Phil. Mag. 1970, 21, 63–82. 10. Campbell, J.D. Dynamic Plasticity of Metals. Springer Verlag: Wien, NY, 1972. 11. Harding, J. Material behavior at high rates of strain. In Impact Loading and Dynamic Behaviour of Materials; Chiem, C.Y.; Kunze, H.D.; Meyer, L.W., Eds.; DGM-Informationsgesellschaft Oberursel: Germany, 1988. 12. El-Magd, E. Mechanical properties at high strain rates. J. Phys. IV 1994, 4, C8-149–C8-170. 13. Perzyna, P. The constitutive equation for rate sensitive plastic material. Quart. Appl. Math. 1963, 20, 321–332. 14. Ludwik, P. U ¨ ber den Einfluß der Deformationen mit besonderer Beru ¨ cksich- tigung der Nachwirkungserscheinungen. Phys Zeitschrift 1909, 10 (suppl. 12), 411–417. 15. Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. 16. Gilman, J.J. Micromechanics of Flow in Solids; McGrawHill: New York, 1969. 17. Lindholm, U.S. Some Experiments in dynamic plasticity under combined stress. In Mechanical Behaviour of Materials under Dynamic Loads; Lindholm, U.S. Ed.; Springer-Verlag: Berlin, 1968. 18. Kawate, K.; Hashimoto, S.; Kurokawa, K. Analyses of high velocity tension of bars of finite length of b.c.c. and f.c.c. metals with their own constitutive equations. In High Velocity Deformation of Solids; Kawata, K.; Shoiri, J., Eds.; Springer-Verlag: New York, 1978. 19. Vo ¨ hringer, O. Habilitation Thesis, Technical University, Karlsruhe, Germany,1972. 20. Macherauch, E.; Vo ¨ hringer, O. Das Verhalten metallischer Werkstoffe unter mechanischer Beanspruchung Z Werkstofftechnik 1978, 9, 370–391. 21. Kocks, U.F.; Argon, A.S.; Ashby, M.F. Thermodynamics and Kinetics of Slip; Pergamon Press: New York, 1975. 22. Armstrong, R.W. Relation between the Petch ‘‘Friction’’ stress and the thermal activation rate equation. Acta Metal 1967, 15, 667–668. 23. Zerilli, F.J.; Armstrong, R.W. Dislocation-mechanics-based constitutive relations for mater ial dynamic calc ulations. J. Appl. Phys. 1987, 61, 1816–1825. 24. Kumar, A.; Hauser, F.E.; Dorn, J.E. Viscous drag on dislocations in aluminium at high strain rates. Acta Metal 1968, 16, 1189–1197. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. 25. Sakino, K.; Shiori, J. Dynamic flow stress response to sudden reduction in strain rate at very high strain rates. J. Phys. France IV 1991, (suppl III 1), C3–35. 26. El-Magd, E.; Treppmann, C. Mechanical Behaviour of AA7075, Ck45N and TiAl6V4 at High Strain Rates, Materialsweek, Munich, September 2000; http:==www.proceedings.materialsweek.org=proceed=mw2000 786.pdf. 27. El-Magd, E.; Treppmann, C. Modelling of mechanical behaviour of materials for high speed cutting processes. Third International Conference on Metal Cutting and High Speed Machining, Metz, Conference Proceedings, Vol. II, 25–28, University Melz, France, 2001. 28. Treppmann, C. Fließverhalten metallischer Werkstoffe bei hohen Dehngesch- windigkeiten. Ph.D. Thesis. RWTH Aachen: Germany, 2001. 29. Dormeval, R. The adiabatic shear phenomenon. In Materials at High Strain Rates; Blazynski, T. Ed.; Elsevier Applied Science: London, 1988; 47–70. 30. Troost, A.; El-Schennawi, A. Zusammenhang zwischen isothermer und adiabatischer Fließkurve. Mech. Res. Comm. 1975, 1, 331–334. 31. Troost, A.; El-Schennawi, A. Einfluss der Umformwa ¨ rme auf die Fliesskurve und auf im Zugversuch ermittelte mechanische Eigenschaften. Arch Eisen- hu ¨ ttenwes 1975, 46 ( suppl 11), 729–733. 32. Doege, E.; Meyer-Nolkemper, H.; Saeed, I. Fliessverkurvenatlas metallischer Werkstoffe; Hanser Verlag: Mu ¨ nchen 1986. 33. Coffey, C.S.; Armstrong, R.W. Description of the hot spots associated with localized zones in impact tests. In Shock Waves and High-Strain Rate Phenomena in Metals; Meyers, M.A.; Morr, L.E., Eds.; Plenum Press: New York, NY, 1981; 313–324. 34. Semiatin, S.L.; Staker, M.R.; Jones, J.J. Plastic instability and flow localization in shear at high rates of deformation. Acta Metal 1984, 32, 1347–1354. 35. Giovanola, J.H. Observation of adiabatic shear banding in simple torsion. In Impact Loading and Dynamic Behaviour of Materials; Chiem, C.Y.; Kunze, H.D.; Meyer, L.W., Eds.; DGM-Informations-Gesellschaft Oberursel: Germany, 1988. 36. Cho, K.M.; Lee, S.; Nutt, R.; Duffy, J. Adiabatic shear band formation during dynamic torsional deformation of an HY-100 Steel. Acta Metal 1993, 41, 923–932. 37. Hartmann, K.H.; Kunze, H.D.; Meyer, L.W. Metallurgical effects on impact loaded materials. In Shock Waves and High Strain Rate Phenomena in Metals; Meyers, M.A.; Murr, L.E., Eds.; Plenum Press: New York, 1981; 325–337. 38. El-Magd, E.; Treppmann, C. High speed quick-stop tests cut with the split- hopkinson-bar. In Scientific Fundamentals of HSC; Schulz, H. Ed.; Karl Hanser Verlag: Mu ¨ nchen, 2001. 39. El-Magd, E.; Brodmann, M. Ductility of aluminium AA7075 at high strain rates. J. Phys. IV France 2000, 10, Pr9 335–Pr9 340. 40. Rix, K.F.W. Konstitutive Gleichungen fu ¨ r metallische Werkstoffe unter Zeitvera ¨ nderlicher Hochtemperatur-Beanspruchung. Ph.D. Dissertation, RWTH Aachen, 1997. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. 41. Lemaitre, J.; Chaboche, J.L. Mechanics of Solid Materials; Cambridge University Press: Cambridge, 1990. 42. ABAQUS=Standard Version 6.1. In User’s Manual Volume II. Hibbit, Karlsson & Sorensen, Inc.: New York, 2000. 43. Hoffmann, M.; Seeger, T.A. A generalized method for estimating multiaxial elastic–plastic notch stresses and strains, part 1. Trans ASME 1985, 107, 250–254. 44. Hoffmann, M.; Seeger, T.A. A generalized method for estimating multiaxial elastic-plastic notch stresses and strains, part 2. Trans ASME 1985, 107, 255– 260. 45. Tipton, S.M.; Nelson, D.V. Methods for estimating cyclic notch strains in SAE specimen. In Multiaxial Fatigue; Socie, D.; Leese, G.E., Eds.; Society of Automotive Engineers Inc: Warrendale, PA, 1989; 101–106. 46. Neuber, H. Theory of stress concentration for shear strained prismatical bodies with arbitrary nonlinear stress–strain law. J. Appl. Mechanics 1961, 28, 544–550. 47. Tipton, S.M. Multiaxial fatigue life predictions of the SAE specimen using strain based approaches. In Multiaxial Fatigue; Socie, D.; Leese, G.E., Eds.; Society of Automotive Engineers Inc: Warrendale, PA, 1989; 67–80. 48. ASME Boiler and Pressure Vessel Code. Sec III, Div. I: Case N-47–33, 1995. 49. Brown, M.W.; Miller, K.J. High temperature low-cycle biaxial fatigue of two steels. Fatigue Eng. Mat. Structures 1979, 1, 217–229. 50. Lohr, R.D.; Ellison, E.L.G. A simple theory for low cycle multiaxial fatigue. Fatigue Eng. Mat. Structures 1980, 3, 1–17. 51. Garud, Y.S. A new approach to the evaluation of fatigue under multiaxial loadings. J. Eng. Mat. Techn. ASME Trans. 1981, 103, 118–125. 52. El-Magd, E.; Wahlen, V. Energiedissipationshypothese zur Festigkeitsrech- nung bei mehrachsiger Schwingbeanspruchung. Z Werkstofftechnik 1994, 25, 218–223. 53. Stratmann, P.; Bowe, K.H. U ¨ ber die Anwendung des Gleichstrom- Potentialsondenverfahrens in der Bruchmechanik. Materialpru ¨ fung 1976, 18, 339–341. 54. El-Magd, E.; Mahmoud, M. Verhalten gekerbter Biegeproben aus der Aluminiumlegierung AA7075 im Kurzzeitermuedungsbereich. Materialwis- senschaft und Werkstofftechnik 2003, 2, 242–248. 55. Weaver, C.V.; Williams, J.G. Deformation of a carbon–epoxy composite under hydrostatic pressure. J. Material Sci. 1975, 10, 1323–1333. 56. Evans, A.G.; Adler, W.F. Kinking as a mode of structural degradation in carbon fiber composites. Acta Metal 1978, 26, 725–738. 57. Yang, W.; Wie, Y.G. Progressive damage along kink bands in fiber-reinforced composite blocks under compression. Int. J. Damage Mechanics 1992, 1, 80–101. 58. Pattnaik, A.; Kim, C.; Weimer, R.J. Deformation behavior of depleted uranium=tungsten fiber composites in compression. In Compression Testing of Homogeneous Materials and Composites; ASTM STP 808, ASTM: West Conshohoken 1983; 254–275. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. 59. Schuerch, H. Prediction of compressive strength in uniaxial boron fiber–metal matrix composite materials. J. Am. Inst. Aeronautics Astronautics 1966, 4, 102–106. 60. El Magd, E.; Mahmoud, M.; Vervoort, S. Finite Elemente Simulation des Faserverhaltens metallischer Verbundwerkstoffe bei LCF-Beanspruchung. Z Metallkunde 2001, 92, 191–196. 61. Ahlquist, C.N.; Nix, W.D. The measurement of internal stresses during creep of Al and Al–mg alloys. Acta Metal 1971, 19, 373–385. 62. Nix, W.D.; Ilschner, B. Mechanism controlling creep of single phase metals and alloys. In Proceedings of the Fifth International Conference on Strength of Metals and Alloys; Haasen, P.; Gerold, V.; Kostors, G., Eds.; Pergammon Press: Oxford, 1980; 1503–1514. 63. Estrin, Y.; Mecking, H. A unified phenomenological description for work hard- ening and creep based on the one-parameter model. Acta Metal 1984, 32, 57–70. 64. Reppich, B.; Heilmaier, M.; Wunder, J.; Baumeister, H.; Huber, T. Mechanical analysis of the creep behavior of iron-base superalloys. In Microstructure and Mechanical Properties of Metallic High-Temperature Materials, DFG-Research Report; Mughrabi, H. Ed.; Wiley-VCH: Weinheim, 1999. 65. Mughrabi, H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metal 1983, 31, 1367–1379. 66. Nicolini, G. Mikrostuktur und Zeitstandverhalten teilchengeha ¨ rteter Hoch- temperaturwerkstoffe. Ph.D. Dissertation, RWTH Aachen, 1998. 67. Kachanov, L.M. The Theory of Creep. In Engl. Transl; Kennedy, A.J. Ed.; Boston Spa: Wetherby, 1960. 68. Rabotnov, Y.N. Creep Problems in Structural Members:InEngl. Transl.; Lecki, F.A. Ed.; North Holland Publishing Company: Amsterdam, 1969. 69. Shaker, C. Zeitstandverhalten metallischer Werkstoffe bei Zeitvera ¨ nderlicher Beanspruchung; Ph.D. Dissertation, RWTH Aachen, 1991. 70. El-Magd, E. Hochtemperatur-Wer kstofftechnik; RWTH Aachen, LFW- Umdruck, 1999. 71. Norton, F.N. The Creep of Steel at High Temperature; McGraw-Hill: New York, 1929. 72. El-Magd, E.; Pantelakis, P.; Jaeger, K. Influence of stress and temperature changes on the creep damage rate. Res. Mechanica 1987, 21, 55–72. 73. Neubing, H.C.Production and properties of aluminum powder for powder metallurgy. PMI 1981, 13, 74–78. 74. El-Magd, E.; Ismail, Y.; Brockmann, G.J.; Baumgarten, J. Influence of the dispersoid material and forming process on the creep behaviour of dispersion strengthened aluminium. Mat-wiss u Werkstofftech 1996, 28, 34–39. 75. Li, Y.; Langdorn, T.G. An examination of creep data for an Al–mg composite. Met. Trans. A 1997, 28, 1271–1273. 76. Orlova, A.; Kucharova, K.; Brezina, J.; Krejci, K.; Cadek, J. High temperature creep in Al 4 C 3 Dispersion strengthened aluminium alloys in tension and compression. Scr. Metal Mater. 1993, 29, 63–68. 77. Ismail, Y.; Nicolini, G.; El-Magd, E. Deformation behaviour of particle strengthened P=M-aluminium alloys under creep l o ads. Metall 1997, 51, 557–563. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. 78. Kro ¨ pfl, I.; Vo ¨ hringer, O.; Macherauch, E. Creep behaviour of dispersion hardened aluminium materials. Proceedings of the Second International Conference on Mechanics of Time Dependent Materials, USA=CA: Pasadena, 1998. 79. El-Magd, E.; Nicolini, G. Creep behavior and microstructure of dispersion- strengthened PM-Aluminium materials at elevated temperatures. In Mughrabi, H. , et al. Eds.; DFG-report, Microstructure and Mechanical Properties of Metallic High-Temperature MaterialsWiley-VCH,Eds. Germany= Weinheim 1999; 18–33. 80. Reppich, B.; Brungs, F.; Hu ¨ mmer, G.; Schmidt, H. Modelling of the creep behaviour of ODS-platinum-based alloys; In Creep and Fracture of Engineer- ing Materials and Structures; Wilshire, B.; Evans, R.W., Eds.; The Institute of Metals: London, 1990; 141–168. 81. Guttmann, V.; Tirum, J. On the influence of thermal pretreatment on creep and microstructure of alloy 800. Z Metallkunde 1990, 81, 428–432. 82. Diglio, M.R.; Straube, H.; Sprradek, K.; Degischer, H.P. Rupture Ductility of Creep Resistant Steels. Strang, A. The Institute of Metals: London, 1990. 83. Martin, J.W. Micromechanisms in Particle-Hardened Alloys; Cambridge University Press: Cambridge, UK, 1980; 162–187. 84. El-Magd, E.; Nicolini, G.; Farag, M.M. Effect of carbide precipitation on the creep behaviour of alloy 800 HT in the temperature range 700–9008C. Met. Mat. Trans. A 1996, 27 (3), 747–756. 85. Lifshitz, I.M.; Sloyozov, V.V. The kinetics of precipitation from super- saturated solid solutions. J. Phys. Chem. Solids 1961, 19, 35–50. 86. Kranz, A.; El-Magd, E. Creep behavior of the particle strengthened aluminium alloy AA 2024. In Creep and Fracture of Engineering Materials and Structures; Parker, J.D. Ed.; IOM-Communications: London, 2001; 241–250. 87. Cotrell, A.H. Theory of brittle fracture in steel and similar metals. Trans. Metal. Soc. AIME 1958, 212, 192–203. 88. Baluffi, R.W.; Seigle, L.L. Growth of voids in metals during diffusion and creep. Acta Metal 1957, 5, 449–454. 89. Hull, D.; Rimmer, D.E. The growth of grain-boundary voids under stress. Phil. Mag. 1959, 4, 673–687. 90. Raj, R.; Ashby, M.F. Intergranular fracture at elevated temperature. Acta Metal 1975, 23, 653–666. 91. Edward, G.H.; Ashby, M.F. Intergranular fracture during power-law creep. Acta Metal 1977, 27, 1505–1518. 92. Dyson, B.F. Constrains on diffusional cavity growth rates. Metal Sci. 1976, 10, 349–353. 93. Svoboda, J.; C ˇ adek, J. Modelling of intergranular cavity growth with special reference to the mechanism of coupled diffusion and power-law creep. Mat. Sci. Eng. 1987, 93, 135–149. 94. Wilkenson, D.S. The effect of a non-uniform void distribution on grain boundary void growth during creep. Acta Metal 1988, 36, 2055–2063. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. 95. Lindborg, U. Nucleation and growth of creep cracks in an austenitic steel. Acta Metal 1969, 17, 157–166. 96. El-Magd, E.; Walkenhorst, H.W. Investigation on inter-crystalline creep crack growth of the austenitic steels X6CrNi18-11 and X8 CrNiMoNb 16 16. Steel Res. 1990, 61 (1), 39–44. 97. El-Magd, E.; Walkenhorst, H.W.; Freres, P. Rate of growth of wedge type inter-crystalline creep micro-cracks. In Creep and Fracture of Engineering Materials and Structures; Wilshire, B.; Ewans, R.W., Eds.; The Institute of Metals: London, 1993; 99–108. 98. El-Magd, E.; Freres, P. Statistical and computational modelling of initiation and growth of intercrystalline creep cracks. Comp. Mat. Sci. 1994, 3 (2), 159–168. 99. Freres, P.; El-Magd, E. Investigation of the influence of a multi-axial state of stress on the behaviour of intercrystalline creep micro-cracks. Computational Materials Science, 1996, 5, 101–110. 100. El-Magd, E. Simulation of material behavior under impact loading. Computational Materials Sci. 1993, 1, 333–342. 101. Dackweiler, G. Verhalten Metallischer Faserverbundwerkstoffe bei hohen Verformungsgeschwindigkeiten. Ph.D. Dissertation, RWTH Aachen, 1990. 102. El-Magd, E. Simulation of material behavior under dynamic loading. Computers Industrial Eng. 1999, 37, 195–198. 103. Paffrath, W. Verhalten ferritischer Gusseisen bei hohen Verformungsgesch- windigkeiten im Temperaturbereich zwischen 93 K und 293 K. Ph.D. Dissertation, RWTH Aachen, 1989. 104. El-Magd, E.; Brodmann, M. Der Einfluss von Scha ¨ digung auf die adiabatische Fließkurve der Aluminiumlegierung AA7075 unter Schlagzug- beanspruchung. Z Metallkunde 1999, 90, 732–737. 105. Knott, J.F. Micromechanisms of fibrous crack extension in engineering alloys. Met. Sci. 1980, 14, 327–336. 106. Meakin, J.D.; Petch, N.J. Atomistic aspects of fracture. In Fracture of Solids; Drucker, D.C.; Gilman, J.J., Eds.; John Wiley & Sons: New York, 1963; 393– 415. 107. Ghosh, A.K. A criterion for ductile fracture in sheets under biaxial loading. Met. Trans. A 1976, 7, 523–533. 108. Atkins, A.G.; Mai, Y.M. Fracture strains in sheet metalforming and specific essential work of fracture. Eng. Fracture Mech. 1987, 27, 291–297. 109. Gurland, J.; Plateau, J. The mechanism of ductile rupture of metals containing inclusions. Trans. ASM 1963, 56, 442–451. 110. Le Roy, G.; Embury, J.D.; Edward, G.; Ashby, M.F. A model of ductile fracture based on the nucleation and growth of voids. Acta Met. 1981, 29, 1509–1522. 111. Jun, S.; Zengjie, D.; Zhonghua, L.; Mingjing, T. Fracture strength of spheroidal carbide particle. Int. J. Fract. 1990, 42, 39–42. 112. Gurson, A.L. Continuum theory of ductile rapture by void nucleation and growth Part I—yield criteria and flow rules for porous ductile media. J. Eng. Mat. Tech. 1977, 99, 2–15. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. 113. Needleman, A.; Rice, J.R. Limits to ductility set by plastic flow localization. In Mechanics of Sheet Metal Forming; Koisten, D.P.; Wang, N.M., Eds.; Plenum Press: New York, 1978; 237. 114. Fowler, J.P.; Worswick, M.J.; Pilkey, A.K.; Nahme, H. Damage leading to ductile fracture under high strain-rate conditions. Met. Trans. A 2000, 31, 831–844. 115. Argon, A.S.; Im, J.; Safoglu, R. Cavity formation from inclusions in ductile fracture. Met. Trans. A 1975, 6, 825–837. 116. Beremin, F.M. Cavity formation from inclusions in ductile fracture of A508 steel. Met. Trans. A 1981, 12, 723–731. 117. Ashby, M.F. Work hardening of dispersion crystals. Phil. Mag. 1966, 14 (2), 1157–1178. 118. Tanaka, K.; Mori, R.; Nakamura, T. Cavity formation at the interface of spherical inclusion in aplastically deformed matrix. Phil. Mag. 1970, 21, 267–279. 119. Chu, C.C.; Needleman, A. Void nucleation effects in biaxially stretched sheets. J. Eng. Mater. Tech. 1980, 102, 249–256. 120. Rice, J.R.; Tracy, D.M. On the ductile enlargement of voids in triaxial stress fields. J. Mech. Phys. Solids 1969, 17, 201–217. 121. Hancock, J.W.; Mackenzie, A.Z. On the mechanisms of ductile failure in high- strength steels subjected to multi-axial stress-state. J. Mech. Phys. Solids 1976, 24, 147–169. 122. Rousselier, G.; Phan-Ngoc, K.; Mottet, G. Elastic–plastic behaviour law including ductile fracture damage. SMIRT Paris 1981, 1, 119–128. 123. Thomason, P.F. Ductile fracture and the stability of incompressible plasticity in the presence of microvoids. Act. Met. 1981, 29, 763–777. 124. Thomason, P.F. An assessment of plastic-stability models of ductile fracture. Act Met 1982, 30, 279–284. 125. Thomason, P.F. A three-dimensional model for ductile fracture by the growth and coalescence of microvoids. Acta Met 1985, 33, 1087–1095. 126. Marini, B.; Mudry, F.; Pineau, A. Ductile rupture of A508 steel under nonradial loading. Eng. Fract. Mech. 1985, 22 (3), 375–386. 127. Holland, D.; Halim, A.; Dahl, W. Influence of stress triaxiality upon ductile crack propagation. Steel Res. 1990, 61, 504–506. 128. McClintock, F.A. A Criterion for ductile fracture by the growth of holes. J. Appl. Mech. 1968, 35, 363–371. 129. Tvergard, V. On localization in ductile materials containing spherical voids. Int. J. Fract. 1982, 18 (4), 237–252. 130. Needleman, A.; Tvergaard, V. An analysis of ductile rupture in notched bars. J. Mech. Phys. Solids 1984, 32, 461–490. 131. Needleman, A.; Tvergaard, V. Effect of material rate sensitivity on failure modes in the Charpy V-notch test. J. Mech. Phys. Solids 1986, 34, 213–241. 132. Carroll, M.M.; Holt, A.C. Static and dynamic pore-collapse relations for ductile porous materials. J. Appl. Phys. 1972, 43 (4), 1626–1636. 133. Johnson, G.R.; Cook, W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985, 21, 31–48. Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved. [...]... their modifications (HSS and HSS-based materials and cemented tungsten carbides) These materials are used (more or less successfully) is a broad range of applications, not only for the machining of steels, but also for many other materials A major trend in the metallurgical design of these cutting tool materials is the application of standard (or slightly modified) universal tool materials using different... machining conditions by reaction of the tool material with oxygen The second section develops these ideas of self-organization for some common tool materials, and shows how they can be understood and exploited for alloys such as high-speed tool steels (HSS), cemented carbides, and cermets A deep level of understanding of the complex interactions that lead to the formation of stable secondary structures... The materials for cutting tools have traditionally been chosen for their excellent hardness and wear resistance under the extreme service conditions (high stresses and temperatures) associated with a high-speed machining operation The interaction between the tool and workpiece was once thought to lie wholly in the domain of the mechanical or physical response of the system to these conditions, and. .. surface phase transformation, resulting in the formation of oxygen-containing, stable secondary structures of the Ti–O type (see Table 2), might occur The mechanism for Ti–O formation is described in some detail below for tribological materials There is a dearth of information in the literature about the self-organization of these alloys during cutting, but it is clear that the formation of protective... Presently, tool materials based on HSS made by sintering and hot extrusion of powders also contain between 10% and 50% of high-melting compounds (e.g., Sandvik Coronites, deformed composite powder materials—DCPM [23–25]) A characteristic feature of these tool materials is the reaction of refractory compounds (carbides, carbonitrides or nitrides of titanium) during cutting, leading to the formation of... stabilization of the friction and wear parameters, in particular, by the selection of appropriate materials 3 The Features of the Self-Organizing Process During Cutting To understand the features of the self-organizing phenomenon during cutting one should understand the processes occurring at the contact surface of the ‘‘cutting tool=workpiece’’ tribosystem over a range of cutting speeds [11, 12]) Studies of cutting... build-up formation takes place The machined material transfer at the tool surface is frequently observed during the metalworking of common structural steels At the same time, oxygen (from the air) penetrates into the cutting zone Chip fragments containing Fe will react with oxygen and carbon at the tool surface and form a boundary layer of both iron carbides and oxides This leads to a built-up edge The formation... cemented carbides and ceramics 1 Frictional and Wear Behavior and Self-Organization of Adaptive Cutting Tool Materials As noted above, one of the characteristic features of cermets is associated with the formation of a thin layer of a protective secondary structure possessing some lubricity at the tool surface The formation of a stable secondary structure results in an excellent surface finish and close tolerance... correlated to the relaxation properties of the material, especially at the unstable stage of wear If the tool material has a structure that is unable to effectively transform and dissipate the energy generated by friction (a concern with the majority of traditional tool materials), damaging surface relaxation processes (e.g., adhesion to the machined part or crack formation on the tool surface) dominate during... the tool life and improved manufacturing productivity III MAJOR CUTTING TOOL MATERIALS It is possible to classify cutting tool materials according to their different characteristics and domains of application Copyright 2004 by Marcel Dekker, Inc All Rights Reserved A Universal Cutting Tool Materials The principal focus of this paper is on the so-called ‘‘universal’’ cutting tool materials and their modifications . the failure criterion. For quasi-static loading (Fig. 67a), the envel- ope is described by the Hancock=M ackenzie relation and for dynamic load- ing (Fig. 67b) by Eq. (111 ). The comparison between. creep micro-cracks. Computational Materials Science, 1996, 5, 101 110 . 100. El-Magd, E. Simulation of material behavior under impact loading. Computational Materials Sci. 1993, 1, 333–342. 101 nucleation and growth of voids. Acta Met. 1981, 29, 1509–1522. 111 . Jun, S.; Zengjie, D.; Zhonghua, L.; Mingjing, T. Fracture strength of spheroidal carbide particle. Int. J. Fract. 1990, 42, 39–42. 112 .