ANRV306-IY25-12 ARI 11 February 2007 12:20 84. Skold M, Xiong X, Illarionov PA, Besra GS, Behar SM. 2005. Interplay of cytokines and microbial signals in regulation of CD1d expression and NKT cell activation. J. Immunol. 175:3584–93 85. de Lalla C, Galli G, Aldrighetti L, Romeo R, Mariani M, et al. 2004. Production of profi- brotic cytokines by invariant NKT cells characterizes cirrhosis progression in chronic viral hepatitis. J. Immunol. 173:1417–25 86. Wei DG, Lee H, Park SH, Beaudoin L, Teyton L, et al. 2005. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J. Exp. Med. 202:239–48 87. Busshoff U, Hein A, Iglesias A, Dorries R, Regnier-Vigouroux A. 2001. CD1 expression is differentially regulated by microglia, macrophages and T cells in the central nervous system upon inflammation and demyelination. J. Neuroimmunol. 113:220–30 88. Kang SJ, Cresswell P. 2002. Calnexin, calreticulin, and ERp57 cooperate in disulfide bond formation in human CD1d heavy chain. J. Biol. Chem. 277:44838–44 89. Jayawardena-Wolf J, Benlagha K, Chiu YH, Mehr R, Bendelac A. 2001. CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15:897–908 90. Kang SJ, Cresswell P. 2002. Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. EMBO J. 21:1650–60 91. Roberts TJ, Sriram V, Spence PM, Gui M, Hayakawa K, et al. 2002. Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment to NKT cells. J. Immunol. 168:5409–14 92. Lawton AP, Prigozy TI, Brossay L, Pei B, Khurana A, et al. 2005. The mouse CD1d cytoplasmic tail mediates CD1d trafficking and antigen presentation by adaptor protein 3-dependent and -independent mechanisms. J. Immunol. 174:3179–86 93. Cernadas M, Sugita M, van der Wel N, Cao X, Gumperz JE, et al. 2003. Lysosomal localization of murine CD1d mediated by AP-3 is necessary for NK T cell development. J. Immunol. 171:4149–55 94. Sugita M, Cao X, Watts GF, Rogers RA, Bonifacino JS, Brenner MB. 2002. Failure of trafficking and antigen presentationbyCD1in AP-3-deficient cells. Immunity 16:697–706 95. Sanchez DJ, Gumperz JE, Ganem D. 2005. Regulation of CD1d expression and function by a herpesvirus infection. J. Clin. Invest. 115:1369–78 96. Yuan W, Dasgupta A, Cresswell P. 2006. Herpes simplex virus evades natural killer T cell recognition by suppressing CD1d recycling. Nat. Immunol. 7:835–42 97. van den Elzen P, Garg S, Leon L, Brigl M, Leadbetter EA, et al. 2005. Apolipoprotein- mediated pathways of lipid antigen presentation. Nature 437:906–10 98. Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, et al. 1997. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6:187–97 99. Hunger RE, Sieling PA, Ochoa MT, Sugaya M, Burdick AE, et al. 2004. Langerhans cells utilize CD1a and langerin to efficiently present nonpeptide antigens to T cells. J. Clin. Invest. 113:701–8 100. Marks DL, Pagano RE. 2002. Endocytosis and sorting of glycosphingolipids in sphin- golipid storage disease. Trends Cell Biol. 12:605–13 101. Gadola SD, Silk JD, Jeans A, Illarionov PA, Salio M, et al. 2006. Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J. Exp. Med. 203:2293–303 www.annualreviews.org • Biology of NKT Cells 327 Annu. Rev. Immunol. 2007.25:297-336. Downloaded from arjournals.annualreviews.org by HINARI on 09/21/07. For personal use only. ANRV306-IY25-12 ARI 11 February 2007 12:20 102. Sagiv Y, Hudspeth K, Mattner J, Schrantz N, Stern RK, et al. 2006. Cutting edge: impaired glycosphingolipid trafficking and NKT cell development in mice lacking Niemann-Pick type C1 protein. J. Immunol. 177:26–30 103. Sandhoff K, Kolter T. 2003. Biosynthesis and degradation of mammalian glycosphin- golipids. Philos. Trans. R. Soc. London B Biol. Sci. 358:847–61 104. Moody DB, Briken V, Cheng TY, Roura-Mir C, Guy MR, et al. 2002. Lipid length con- trols antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat. Immunol. 3:435–42 105. Ernst WA, Maher J, Cho S, Niazi KR, Chatterjee D, et al. 1998. Molecular interaction of CD1b with lipoglycan antigens. Immunity 8:331–40 106. Cheng TY, Relloso M, Van Rhijn I, Young DC, Besra GS, et al. 2006. Role of lipid trimming and CD1 groove size in cellular antigen presentation. EMBO J. 25:2989–99 107. Gadola SD, Zaccai NR, Harlos K, Shepherd D, Castro-Palomino JC, et al. 2002. Struc- ture of human CD1b with bound ligands at 2.3 ˚ A, a maze for alkyl chains. Nat. Immunol. 3:721–26 108. Schuette CG, Pierstorff B, Huettler S, Sandhoff K. 2001. Sphingolipid activator proteins: proteins with complex functions in lipid degradation and skin biogenesis. Glycobiology 11:81–90R 109. Brozovic S, Nagaishi T, YoshidaM, Betz S, SalasA, et al. 2004. CD1d function is regulated by microsomal triglyceride transfer protein. Nat. Med. 10:535–39 110. Dougan SK, Salas A, Rava P, Agyemang A, Kaser A, et al. 2005. Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J. Exp. Med. 202:529–39 111. de la Salle H, Mariotti S, Angenieux C, Gilleron M, Garcia-Alles LF, et al. 2005. Assis- tance of microbial glycolipid antigen processing by CD1e. Science 310:1321–24 112. Honey K, Benlagha K, Beers C, Forbush K, Teyton L, et al. 2002. Thymocyte expression of cathepsin L is essential for NKT cell development. Nat. Immunol. 3:1069–74 113. Makino Y, Kanno R, Koseki H, Taniguchi M. 1996. Development of Vα4 + NK T cells in the early stages of embryogenesis. Proc. Natl. Acad. Sci. USA 93:6516–20 114. Shimamura M, Ohteki T, Beutner U, MacDonald HR. 1997. Lack of directed Vα14- Jα281 rearrangements in NK1 + T cells. Eur. J. Immunol. 27:1576–79 115. Bendelac A, Hunziker RD, Lantz O. 1996. Increased interleukin 4 and immunoglobulin E production in transgenic mice overexpressing NK1 T cells. J. Exp. Med. 184:1285–93 116. Skold M, Faizunnessa NN, Wang CR, Cardell S. 2000. CD1d-specific NK1.1 + T cells with a transgenic variant TCR. J. Immunol. 165:168–74 117. Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A. 2000. In vivo identification of gly- colipid antigen specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191:1895– 903 118. Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, et al. 2000. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192:741–54 119. Karadimitris A, Gadola S, Altamirano M, Brown D, Woolfson A, et al. 2001. From the cover: human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc. Natl. Acad. Sci. USA 98:3294–98 120. Benlagha K, Wei DG, Veiga J, Teyton L, Bendelac A. 2005. Characterization of the early stages in thymic NKT cell development. J. Exp. Med. 202:485–92 121. Gapin L, Matsuda JL, Surh CD, Kronenberg M. 2001. NKT cells derive from double- positive thymocytes that are positively selected by CD1d. Nat. Immunol. 2:971–78 328 Bendelac · Savage · Teyton Annu. Rev. Immunol. 2007.25:297-336. Downloaded from arjournals.annualreviews.org by HINARI on 09/21/07. For personal use only. ANRV306-IY25-12 ARI 11 February 2007 12:20 122. Bezbradica JS, Hill T, Stanic AK, Van Kaer L, Joyce S. 2005. Commitment toward the natural T (iNKT) cell lineage occurs at the CD4 + 8 + stage of thymic ontogeny. Proc. Natl. Acad. Sci. USA 102:5114–19 123. Egawa T, Eberl G, Taniuchi I, Benlagha K, Geissmann F, et al. 2005. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22:705–16 124. Pellicci DG, Hammond KJ, Uldrich AP, Baxter AG, Smyth MJ, Godfrey DI. 2002. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1 − CD4 + CD1d-dependent precursor stage. J. Exp. Med. 195:835–44 125. Benlagha K, Bendelac A. 2000. CD1d-restricted mouse Vα14 and human Vα24 T cells: lymphocytes of innate immunity. Semin. Immunol. 12:537–42 126. Gumperz JE, Miyake S, Yamamura T, Brenner MB. 2002. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195:625–36 127. Lee PT, Benlagha K, Teyton L, Bendelac A. 2002. Distinct functional lineages of human vα24 natural killer T cells. J. Exp. Med. 195:637–41 128. Crowe NY, Coquet JM, Berzins SP, Kyparissoudis K, Keating R, et al. 2005. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med. 202:1279–88 129. Berzins SP, Cochrane AD, Pellicci DG, Smyth MJ, Godfrey DI. 2005. Limited correla- tion between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur. J. Immunol. 35:1399–407 130. Stetson DB, Mohrs M, Reinhardt RL, Baron JL, Wang ZE, et al. 2003. Constitutive cytokine mRNAs mark natural killer (NK) and NK T cells poised for rapid effector function. J. Exp. Med. 198:1069–76 131. Robson MacDonald H, Lees RK, Held W. 1998. Developmentally regulated extinction of Ly-49 receptor expression permits maturation and selection of NK1.1 + T cells. J. Exp. Med. 187:2109–14 132. Exley M, Porcelli S, Furman M, Garcia J, Balk S. 1998. CD161 (NKR-P1A) costimulation of CD1d-dependent activation of human T cells expressing invariant Vα24 JαQ T cell receptor α chains. J. Exp. Med. 188:867–76 133. Ikarashi Y, Mikami R, Bendelac A, Terme M, Chaput N, et al. 2001. Dendritic cell maturation overrules H-2D-mediated natural killer T (NKT) cell inhibition. Critical role for β7 in CD1d-dependent NKT cell interferon gamma production. J. Exp. Med. 194:1179–86 134. Eberl G, Fehling HJ, von Boehmer H, MacDonald HR. 1999. Absolute requirement for the pre-T cell receptor α chain during NK1.1 + TCRαβ cell development. Eur. J. Immunol. 29:1966–71 135. Wei DG, Curran SA, Savage PB, Teyton L, Bendelac A. 2006. Mechanisms imposing the Vβ bias of Vα14 natural killer T cells and consequences for microbial glycolipid recognition. J. Exp. Med. 203:1197–207 136. Chun T, Page MJ, Gapin L, Matsuda JL, Xu H, et al. 2003. CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J. Exp. Med. 197:907–18 137. Xu H, Chun T, Colmone A, Nguyen H, Wang CR. 2003. Expression of CD1d under the control of a MHC class Ia promoter skews the development of NKT cells, but not CD8 + T cells. J. Immunol. 171:4105–12 138. Voyle RB, Beermann F, Lees RK, Schumann J, Zimmer J, et al. 2003. Ligand-dependent inhibition of CD1d-restricted NKT cell development in mice transgenic for the activating receptor Ly49D. J. Exp. Med. 197:919–25 www.annualreviews.org • Biology of NKT Cells 329 Annu. Rev. Immunol. 2007.25:297-336. Downloaded from arjournals.annualreviews.org by HINARI on 09/21/07. For personal use only. ANRV306-IY25-12 ARI 11 February 2007 12:20 139. Schumann J, Pittoni P, Tonti E, Macdonald HR, Dellabona P, Casorati G. 2005. Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Vα14i NKT cells. J. Immunol. 175:7303–10 140. Coles MC, Raulet DH. 2000. NK1.1 + T cells in the liver arise in the thymus and are se- lected by interactions with class I molecules on CD4 + CD8 + cells. J. Immunol. 164:2412– 18 141. Zimmer MI, Colmone A, Felio K, Xu H, Ma A, Wang CR. 2006. A cell-type specific CD1d expression program modulates invariant NKT cell development and function. J. Immunol. 176:1421–30 142. Gadue P, Morton N, Stein PL. 1999. The Src family tyrosine kinase Fyn regulates natural killer T cell development. J. Exp. Med. 190:1189–96 143. Eberl G, Lowin-Kropf B, MacDonald HR. 1999. Cutting edge: NKT cell development is selectively impaired in Fyn-deficient mice. J. Immunol. 163:4091–94 144. Pasquier B, Yin L, Fondaneche MC, Relouzat F, Bloch-Queyrat C, et al. 2005. Defec- tive NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201:695–701 145. Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS, et al. 2005. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med. 11(3):340–45 146. Chung B, Aoukaty A, Dutz J, Terhorst C, Tan R. 2005. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J. Immunol. 174:3153–57 147. Sayos J, Wu C, Morra M, Wang N, Zhang X, et al. 1998. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the coreceptor SLAM. Nature 395:462–69 148. Chan B, Lanyi A, Song HK, Griesbach J, Simarro-Grande M, et al. 2003. SAP couples Fyn to SLAM immune receptors. Nat. Cell Biol. 5:155–60 149. Latour S, GishG, Helgason CD, HumphriesRK, Pawson T, Veillette A. 2001. Regulation of SLAM-mediated signal transduction by SAP, the X-linked lymphoproliferative gene product. Nat. Immunol. 2:681–90 150. Latour S, Roncagalli R, Chen R, Bakinowski M, Shi X, et al. 2003. Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signaling in immune regulation. Nat. Cell Biol. 5:149–54 151. Veillette A, Latour S. 2003. The SLAM family of immune-cell receptors. Curr. Opin. Immunol. 15:277–85 152. Gadue P, Yin L, Jain S, Stein PL. 2004. Restoration of NK T cell development in fyn- mutant mice by a TCR reveals a requirement for Fyn during early NK T cell ontogeny. J. Immunol. 172:6093–100 153. Borowski C, Bendelac A. 2005. Signaling for NKT cell development: the SAP-Fyn con- nection. J. Exp. Med. 201:833–36 154. Stanic AK, Bezbradica JS, Park JJ, Matsuki N, Mora AL, et al. 2004. NF-κB controls cell fate specification, survival, and molecular differentiation of immunoregulatory natural T lymphocytes. J. Immunol. 172:2265–73 155. Sivakumar V, Hammond KJ, Howells N, Pfeffer K, Weih F. 2003. Differential require- ment for Rel/nuclear factor κB family members in natural killer T cell development. J. Exp. Med. 197:1613–21 156. Cannons JL, Yu LJ, Hill B, Mijares LA, Dombroski D, et al. 2004. SAP regulates T H 2 differentiation and PKC-θ-mediated activation of NF-κB1. Immunity 21:693–706 330 Bendelac · Savage · Teyton Annu. Rev. Immunol. 2007.25:297-336. Downloaded from arjournals.annualreviews.org by HINARI on 09/21/07. For personal use only. ANRV306-IY25-12 ARI 11 February 2007 12:20 157. Schmidt-Supprian M, Tian J, Grant EP, Pasparakis M, Maehr R, et al. 2004. Differential dependence of CD4 + CD25 + regulatory and natural killer-like T cells on signals leading to NF-κB activation. Proc. Natl. Acad. Sci. USA 101:4566–71 158. Stanic AK, Bezbradica JS, Park JJ, Van Kaer L, Boothby MR, Joyce S. 2004. Cutting edge: the ontogeny and function of Vα14Jα18 natural T lymphocytes require signal processing by protein kinase Cθ and NF-κB. J. Immunol. 172:4667–71 159. Wang N, Satoskar A, Faubion W, Howie D, Okamoto S, et al. 2004. The cell surface receptor SLAM controls T cell and macrophage functions. J. Exp. Med. 199:1255–64 160. Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, et al. 2004. T- bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20:477–94 161. Intlekofer AM, Takemoto N, Wherry EJ, Longworth SA, Northrup JT, et al. 2005. Ef- fector and memory CD8 + T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6:1236–44 162. Matsuda JL, Zhang Q, Ndonye R, Richardson SK, Howell AR, Gapin L. 2006. T-bet con- comitantly controls migration, survival, and effector functions during the development of Vα14i NKT cells. Blood 107:2797–805 163. Atherly LO, Lucas JA, Felices M, Yin CC, Reiner SL, Berg LJ. 2006. The Tec family tyrosine kinases Itk and Rlk regulate the development of conventional CD8 + T cells. Immunity 25:79–91 164. Broussard C, Fleischecker C, Horai R, Chetana M, Venegas AM, et al. 2006. Altered development of CD8 + T cell lineages in mice deficient for the Tec kinases Itk and Rlk. Immunity 25:93–104 165. Li W, Kim MG, Gourley TS, McCarthy BP, Sant’Angelo DB, Chang CH. 2005. An alternate pathway for CD4 T celldevelopment: thymocyte-expressed MHC classII selects a distinct T cell population. Immunity 23:375–86 166. Kunisaki Y, Tanaka Y, Sanui T, Inayoshi A, Noda M, et al. 2006. DOCK2 is required in T cell precursors for development of Vα14 NK T cells. J. Immunol. 176:4640–45 167. Williams KL, Zullo AJ, Kaplan MH, Brutkiewicz RR, Deppmann CD, et al. 2003. BATF transgenic mice reveal a role for activator protein-1 in NKT cell development. J. Immunol. 170:2417–26 168. Zullo AJ, Benlagha K, Bendelac A, Taparowsky E. 2007. Sensitivity of NKT cells to transgenic BATF defines a role for AP-1 in the expansion and maturation of NKT cells in the thymus. J. Immunol. 178:58–66 169. Elewaut D, Shaikh RB, Hammond KJ, De Winter H, Leishman AJ, et al. 2003. NIK- dependent RelB activation defines a unique signaling pathway for the development of Vα14i NKT cells. J. Exp. Med. 197:1623–33 170. Boehm T, Scheu S, Pfeffer K, Bleul CC. 2003. Thymic medullary epithelial cell differenti- ation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTβR. J. Exp. Med. 198:757–69 171. Iizuka K, Chaplin DD, Wang Y, Wu Q, Pegg LE, et al. 1999. Requirement for membrane lymphotoxin in natural killer cell development. Proc. Natl. Acad. Sci. USA 96:6336–40 172. Elewaut D, Brossay L, Santee SM, Naidenko OV, Burdin N, et al. 2000. Membrane lymphotoxin is required for the development of different subpopulations of NK T cells. J. Immunol. 165:671–79 173. Franki AS, Van Beneden K, Dewint P, Hammond KJ, Lambrecht S, et al. 2006. A unique lymphotoxin αβ-dependent pathway regulates thymic emigration of Vα14 invariant nat- ural killer T cells. Proc. Natl. Acad. Sci. USA 103:9160–65 www.annualreviews.org • Biology of NKT Cells 331 Annu. Rev. Immunol. 2007.25:297-336. Downloaded from arjournals.annualreviews.org by HINARI on 09/21/07. For personal use only. ANRV306-IY25-12 ARI 11 February 2007 12:20 174. Bezbradica JS, Gordy LE, Stanic AK, Dragovic S, Hill T, et al. 2006. Granulocyte- macrophage colony-stimulating factor regulates effector differentiation of invariant nat- ural killer T cells during thymic ontogeny. Immunity 25:487–97 175. Tomura M, Yu WG, Ahn HJ, Yamashita M, Yang YF, et al. 1999. A novel function of Vα14 + CD4 + NKT cells: stimulation of IL-12 production by antigen-presenting cells in the innate immune system. J. Immunol. 163:93–101 176. Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, et al. 1999. The natural killer T (NKT) cell ligand α-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J. Exp. Med. 189:1121–28 177. Carnaud C, Lee D, Donnars O, Park SH, Beavis A, et al. 1999. Cutting edge: cross- talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163:4647–50 178. Eberl G, MacDonald HR. 2000. Selective induction of NK cell proliferation and cyto- toxicity by activated NKT cells. Eur. J. Immunol. 30:985–92 179. Gonzalez-Aseguinolaza G, Van Kaer L, Bergmann CC, Wilson JM, Schmieg J, et al. 2002. Natural killer T cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med. 195:617–24 180. Fujii S, Shimizu K, Smith C, Bonifaz L, Steinman RM. 2003. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198:267–79 181. Fujii S, Liu K, Smith C, Bonito AJ, Steinman RM. 2004. The linkage of innate to adaptive immunity via maturing dendritic cells invivo requires CD40 ligationin addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 199:1607–18 182. Silk JD, Hermans IF, Gileadi U, Chong TW, Shepherd D, et al. 2004. Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J. Clin. Invest. 114:1800–11 183. Parekh VV, Wilson MT, Van Kaer L. 2005. iNKT-cell responses to glycolipids. Crit. Rev. Immunol. 25:183–213 184. Yoshimoto T, Paul WE. 1994. CD4pos NK1.1pos T cells promptly produced IL-4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 179:1285–95 185. Miyamoto K, Miyake S, Yamamura T. 2001. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing T H 2 bias of natural killer T cells. Nature 413:531–34 186. Oki S, Chiba A, Yamamura T, Miyake S. 2004. The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest. 113:1631–40 187. Eberl G, MacDonald HR. 1998. Rapid death and regeneration of NKT cells in anti- CD3epsilon- or IL-12-treated mice: a major role for bone marrow in NKT cell home- ostasis. Immunity 9:345–53 188. Uldrich AP, Crowe NY, Kyparissoudis K, Pellicci DG, Zhan Y, et al. 2005. NKT cell stimulation with glycolipid antigen in vivo: costimulation-dependent expansion, Bim- dependent contraction, and hyporesponsiveness to further antigenic challenge. J. Im- munol. 175:3092–101 189. Parekh VV, Wilson MT, Olivares-Villagomez D, Singh AK, Wu L, et al. 2005. Glycolipid antigen induces long-term natural killer T cell anergy in mice. J. Clin. Invest. 115:2572–83 190. Fujii S, Shimizu K, Kronenberg M, Steinman RM. 2002. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat. Immunol. 3:867–74 332 Bendelac · Savage · Teyton Annu. Rev. Immunol. 2007.25:297-336. Downloaded from arjournals.annualreviews.org by HINARI on 09/21/07. For personal use only. ANRV306-IY25-12 ARI 11 February 2007 12:20 191. Chang DH, Osman K, Connolly J, Kukreja A, Krasovsky J, et al. 2005. Sustained expan- sion of NKT cells and antigen-specific T cells after injection of α-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med. 201:1503–17 192. Goff RD, Gao Y, Mattner J, Zhou D, Yin N, et al. 2004. Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc. 126:13602–3 193. Yu KO, Im JS, Molano A, Dutronc Y, Illarionov PA, et al. 2005. Modulation of CD1d- restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc. Natl. Acad. Sci. USA 102:3383–88 194. Bezbradica JS, Stanic AK, Matsuki N, Bour-Jordan H, Bluestone JA, et al. 2005. Dis- tinct roles of dendritic cells and B cells in Vα14Jα18 natural T cell activation in vivo. J. Immunol. 174:4696–705 195. Cui J, Shin T, Kawano T, Sato H, Kondo E, et al. 1997. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278:1623–26 196. Park SH, Kyin T, Bendelac A, Carnaud C. 2003. The contribution of NKT cells, NK cells, and other γ-chain-dependent non-T non-B cells to IL-12-mediated rejection of tumors. J. Immunol. 170:1197–201 197. Nieuwenhuis EE, Matsumoto T, Exley M, Schleipman RA, Glickman J, et al. 2002. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat. Med. 8:588–93 198. Muhlen KA, Schumann J, Wittke F, Stenger S, Van Rooijen N, et al. 2004. NK cells, but not NKT cells, are involved in Pseudomonas aeruginosa exotoxin A-induced hepatotoxicity in mice. J. Immunol. 172:3034–41 199. Dieli F, Sireci G, Russo D, Taniguchi M, Ivanyi J, et al. 2000. Resistance of natural killer T cell-deficient mice to systemic Shwartzman reaction. J. Exp. Med. 192:1645–52 200. Emoto M, Miyamoto M, Yoshizawa I, Emoto Y, Schaible UE, et al. 2002. Critical role of NK cells rather than Vα14 + NKT cells in lipopolysaccharide-induced lethal shock in mice. J. Immunol. 169:1426–32 201. Kaplan MM, Gershwin ME. 2005. Primary biliary cirrhosis. N. Engl. J. Med. 353:1261–73 202. Selmi C, Balkwill DL, Invernizzi P, Ansari AA, Coppel RL, et al. 2003. Patients with primary biliary cirrhosis react against a ubiquitous xenobiotic-metabolizing bacterium. Hepatology 38:1250–57 203. Kita H, Naidenko OV, Kronenberg M, Ansari AA, Rogers P, et al. 2002. Quantitation and phenotypic analysis of natural killer T cells in primary biliary cirrhosis using a human CD1d tetramer. Gastroenterology 123:1031–43 204. Schofield L, McConville MJ, Hansen D, Campbell AS, Fraser-Reid B, et al. 1999. CD1d- restricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283:225–29 205. Molano A, Park SH, Chiu YH, Nosseir S, Bendelac A, Tsuji M. 2000. Cutting edge: the IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d- independent: exploring the role of GPIs in NK T cell activation and antimalarial re- sponses. J. Immunol. 164:5005–9 206. Romero JF, Eberl G, MacDonald H, Corradin G. 2001. CD1d-restricted NK T cells are dispensable for specific antibody responses and protective immunity against liver stage malaria infection in mice. Parasite Immunol. 23:267–69 207. Mallevaey T, Zanetta JP, Faveeuw C, Fontaine J, Maes E, et al. 2006. Activation of invariant NKT cells by the helminth parasite Schistosoma mansoni. J. Immunol. 176:2476– 85 www.annualreviews.org • Biology of NKT Cells 333 Annu. Rev. Immunol. 2007.25:297-336. Downloaded from arjournals.annualreviews.org by HINARI on 09/21/07. For personal use only. ANRV306-IY25-12 ARI 11 February 2007 12:20 208. Ilyinskii PO, Wang R, Balk SP, Exley MA. 2006. CD1d mediates T-cell-dependent re- sistance to secondary infection with encephalomyocarditis virus (EMCV) in vitro and immune response to EMCV infection in vivo. J. Virol. 80:7146–58 209. Huber S, Sartini D, Exley M. 2003. Role of CD1d in coxsackievirus B3-induced my- ocarditis. J. Immunol. 170:3147–53 210. Durante-Mangoni E, Wang R, Shaulov A, He Q, Nasser I, et al. 2004. Hepatic CD1d expression in hepatitis C virus infection and recognition by resident proinflammatory CD1d-reactive T cells. J. Immunol. 173:2159–66 211. Grubor-Bauk B, Simmons A, Mayrhofer G, Speck PG. 2003. Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant Vα14-Jα281 TCR. J. Immunol. 170:1430–34 212. Cornish AL, Keating R, Kyparissoudis K, Smyth MJ, Carbone FR, Godfrey DI. 2006. NKT cells are not critical for HSV-1 disease resolution. Immunol. Cell Biol. 84:13–19 213. Wilson SB, Kemt SC, Patton KT, Orban T, Jackson RA, et al. 1998. Extreme Th1 bias of invariant Vα24JαQ T cells in type I diabetes. Nature 391:177–81 214. Kukreja A, Cost G, Marker J, Zhang C, Sun Z, et al. 2002. Multiple immuno-regulatory defects in type-1 diabetes. J. Clin. Invest. 109:131–40 215. Redondo MJ, Gottlieb PA, Motheral T, Mulgrew C, Rewers M, et al. 1999. Heterophile antimouse immunoglobulin antibodies may interfere with cytokine measurements in pa- tients with HLA alleles protective for type 1A diabetes. Diabetes 48:2166–70 216. Wang B, Geng YB,WangCR. 2001. CD1-restricted NK T cells protectnonobese diabetic mice from developing diabetes. J. Exp. Med. 194:313–20 217. Shi FD, Flodstrom M, Balasa B, Kim SH, Van Gunst K, et al. 2001. Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc. Natl. Acad. Sci. USA 98:6777–82 218. Bach JF, Bendelac A, Brenner MB, Cantor H, De Libero G, et al. 2004. The role of innate immunity in autoimmunity. J. Exp. Med. 200:1527–31 219. Lehuen A, Lantz O, Beaudoin L, Laloux V, Carnaud C, et al. 1998. Overexpression of natural killer T cells protects Vα14-Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188:1831–39 220. Sharif S, Arreaza GA, Zucker P, Mi QS, Sondhi J, et al. 2001. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat. Med. 7:1057–62 221. Hong S, Wilson MT, Serizawa I, Wu L, Singh N, et al. 2001. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in nonobese diabetic mice. Nat. Med. 7:1052–56 222. Beaudoin L, Laloux V, Novak J, Lucas B, Lehuen A. 2002. NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic β cells. Immunity 17:725–36 223. Griseri T, Beaudoin L, Novak J, Mars LT, Lepault F, et al. 2005. Invariant NKT cells exacerbate type 1 diabetes induced by CD8 T cells. J. Immunol. 175:2091–101 224. Forestier C, Molano A, Im JS, Dutronc Y, Diamond B, et al. 2005. Expansion and hyper- activity of CD1d-restricted NKT cells during the progression of systemic lupus erythe- matosus in (New Zealand Black × New Zealand White)F 1 mice. J. Immunol. 175:763–70 225. Zeng D, Liu Y, Sidobre S, Kronenberg M, Strober S. 2003. Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J. Clin. Invest. 112:1211–22 334 Bendelac · Savage · Teyton Annu. Rev. Immunol. 2007.25:297-336. Downloaded from arjournals.annualreviews.org by HINARI on 09/21/07. For personal use only. ANRV306-IY25-12 ARI 11 February 2007 12:20 226. Chan OT, Paliwal V, McNiff JM, Park SH, Bendelac A, Shlomchik MJ. 2001. Deficiency in β 2 -microglobulin, but not CD1, accelerates spontaneous lupus skin disease while in- hibiting nephritis in MRL-Fas(lpr) nice: an example of disease regulation at the organ level. J. Immunol. 167:2985–90 227. Yang JQ, Chun T, Liu H, Hong S, Bui H, et al. 2004. CD1d deficiency exacerbates inflammatory dermatitis in MRL-lpr/lpr mice. Eur. J. Immunol. 34:1723–32 228. Yang JQ, Singh AK, Wilson MT, Satoh M, Stanic AK, et al. 2003. Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis. J. Immunol. 171:2142–53 229. Singh AK, Yang JQ, Parekh VV, Wei J, Wang CR, et al. 2005. The natural killer T cell ligand α-galactosylceramide prevents or promotes pristane-induced lupus in mice. Eur. J. Immunol. 35:1143–54 230. Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, et al. 2001. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J. Immunol. 167:4046–50 231. Dhodapkar MV, Geller MD, Chang DH, Shimizu K, Fujii S, et al. 2003. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J. Exp. Med. 197:1667–76 232. Sriram V, Cho S, Li P, O’Donnell PW, Dunn C, et al. 2002. Inhibition of glycolipid shedding rescues recognition of a CD1 + T cell lymphoma by natural killer T (NKT) cells. Proc. Natl. Acad. Sci. USA 99:8197–202 233. Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, et al. 2000. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191:661–68 234. Crowe NY, Smyth MJ, Godfrey DI. 2002. A critical role for natural killer T cells in immunosurveillance of methylcholanthrene-induced sarcomas. J. Exp. Med. 196:119–27 235. Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, et al. 2000. NKT cell- mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 path- way. Nat. Immunol. 1:515–20 236. Terabe M, Swann J, Ambrosino E, Sinha P, Takaku S, et al. 2005. A nonclassical non- Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med. 202:1627–33 237. Renukaradhya GJ, Sriram V, Du W, Gervay-Hague J, Van Kaer L, Brutkiewicz RR. 2006. Inhibition of antitumor immunity by invariant natural killer T cells in a T-cell lymphoma model in vivo. Int. J. Cancer 118:3045–53 238. Lisbonne M, Diem S, de Castro Keller A, Lefort J, Araujo LM, et al. 2003. Cutting edge: invariant Vα14 NKT cells are required for allergen-induced airway inflammation and hyperreactivity in an experimental asthma model. J. Immunol. 171:1637–41 239. Akbari O, Stock P, Meyer E, Kronenberg M, Sidobre S, et al. 2003. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat. Med. 9:582–88 240. Akbari O, Faul JL, Hoyte EG, Berry GJ, Wahlstrom J, et al. 2006. CD4 + invariant T-cell-receptor + natural killer T cells in bronchial asthma. N. Engl. J. Med. 354:1117–29 241. Thomas SY, Lilly CM, Luster AD. 2006. Invariant natural killer T cells in bronchial asthma. N. Engl. J. Med. 354:2613–16 242. Tupin E, Nicoletti A, Elhage R, Rudling M, Ljunggren HG, et al. 2004. CD1d-dependent activation of NKT cells aggravates atherosclerosis. J. Exp. Med. 199:417–22 243. Askenase PW, Szczepanik M, Itakura A, Kiener C, Campos RA. 2004. Extravascular T-cell recruitment requires initiation begun by Vα14 + NKT cells and B-1 B cells. Trends Immunol. 25:441–49 www.annualreviews.org • Biology of NKT Cells 335 Annu. Rev. Immunol. 2007.25:297-336. Downloaded from arjournals.annualreviews.org by HINARI on 09/21/07. For personal use only. ANRV306-IY25-12 ARI 11 February 2007 12:20 244. Sonoda KH, Exley M, Snapper S, Balk SP, Stein-Streilein J. 1999. CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune- privileged site. J. Exp. Med. 190:1215–26 245. Palmer JL, Tulley JM, Kovacs EJ, Gamelli RL, Taniguchi M, Faunce DE. 2006. Injury- induced suppression of effector T cell immunity requires CD1d-positive APCs and CD1d-restricted NKT cells. J. Immunol. 177:92–99 246. Porcelli SA. 2005. Bird genes give new insights into the origins of lipid antigen presen- tation. Proc. Natl. Acad. Sci. USA 102:8399–400 247. Gadola SD, Dulphy N, Salio M, Cerundolo V. 2002. Vα24-JαQ-independent, CD1d- restricted recognition of α-galactosylceramide by human CD4 + and CD8αβ + T lym- phocytes. J. Immunol. 168:5514–20 248. Brigl M, van den Elzen P, Chen X, Meyers JH, Wu D, et al. 2006. Conserved and hetero- geneous lipid antigen specificities of CD1d-restricted NKT cell receptors. J. Immunol. 176:3625–34 249. Zerrahn J, Held W, Raulet DH. 1997. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88:627–36 250. Huseby ES, White J, Crawford F, Vass T, Becker D, et al. 2005. How the T cell repertoire becomes peptide and MHC specific. Cell 122:247–60 336 Bendelac · Savage · Teyton Annu. Rev. Immunol. 2007.25:297-336. Downloaded from arjournals.annualreviews.org by HINARI on 09/21/07. For personal use only. . for Vα 14 NKT cells in IL-12-mediated rejection of tumors. Science 278:1623–26 196. Park SH, Kyin T, Bendelac A, Carnaud C. 2003. The contribution of NKT cells, NK cells, and other γ-chain-dependent. Campos RA. 20 04. Extravascular T-cell recruitment requires initiation begun by Vα 14 + NKT cells and B-1 B cells. Trends Immunol. 25 :44 1 49 www.annualreviews.org • Biology of NKT Cells 335 Annu Immunol. 170: 241 7–26 168. Zullo AJ, Benlagha K, Bendelac A, Taparowsky E. 2007. Sensitivity of NKT cells to transgenic BATF defines a role for AP-1 in the expansion and maturation of NKT cells in the thymus.