Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 49 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
49
Dung lượng
778,16 KB
Nội dung
Corticosteroids are powerful anti-inflammatory agents that affect both the number and function of inflammatory cells. When given systemically, they reduce circulation of basophil, eosinophil, and monocyte counts to 20% of normal (19). They have multiple effects on the inflammatory response in CRS. They inhibit the secretion of growth factors and mediators of inflammatory cell proliferation, the release of arachidonic acid metabo- lites, the accumulation of neutrophils in the affected tissues, decrease vascu- lar permeability, and thin mucus by inhibiting glycoprotein secretion from submucosal glands (20). When used in a topical form, nasal steroid sprays have been shown to be safe and effective in alleviating the symptoms of allergic rhinitis (21). Their use in patients with CR S is important in decreasing the size of nasal polyps and diminishing sinomucosal edema (22). There are no set guidelines for the duration of their use, and side effects from long-term use are unknown. Anecdotally, patients with allergic rhinitis and nasal polyps use steroid sprays for many years with little side effects. Studies involving the use of oral steroids in the treatment of CRS were not done frequently. These agents represent some of our most effective medi- cations, as they have been shown to decrease the size of nasal polyps, diminish mucosal edema, and promote drainage of obstructed sinus ostia (23,24). Some patients with significant and recurrent polyps are maintained on a daily dose of systemic steroids. This can be deleterious to the patients’ overall health because of significant side effects. Prolonged oral steroid use may result in muscle wasting and osteoporosis. Bone density scans should be considered in patients on long-term therapy. Extended use may also result in hyperten- sion, redistribution of body fat stores, and may even induce long-lasting sup- pression of ACTH production, which can result in anterior pituitary and adrenal cortical atrophy. Because of these harmful side effects, steroids are tapered and given in short courses that may span three to four weeks. Short-term side effects include water retention, mood shifts, and an increase in energy, which may result in sleep deprivation. When treating a bout of CRS, patients are often given a tapering dose of prednisone over a three- week period. It is imperative that the treating physician warn the patient of the potential short- and long-term side effects, and some have even resorted to having patients sign an informed consent form prior to the medical therapy. ADJUNCTIVE THERAPY As stated previously, the medical management of CRS rarely depends on a single medication. In many cases, multiple agents with different mechanisms of action are given in hopes of ultimately promoting drainage of secretions and improved oxygenation to obstructed sinus ostia. One such medication is a decongestant. Decongestants are a-adrenergic agonists that act to constrict capacitance vessels and decrease mucosal Chronic Rhinosinusitis 223 edema. Topical therapy such as oxymetazoline or neosynephrine may be used in an acute setting, but overuse will result in a rebound effect and rhinitis medicamentosa. Systemic decongestants can be used for longer periods of time, but may cause side effects of insomnia and may exacerbate underlying systemic hypertension (25). Antihistamines are used in common therapy for patients with underlying allergic rhinitis, but their use in patients without atopy may cause more harm than good. They effectively relieve symptoms of itching, rhinorrhea, and sneez- ing in allergic patients, but in nonallergic patients may result in thickening of secretions, which may prevent the needed drainage of the sinus ostia. A well-tolerated medication that thins secretions to facilitate drainage is a high-dose guaifenesin (glyceryl guaicolate). Given a daily dose of 2400 mg, patients may experience less nasal congestion and thinner post- nasal drainage (26). Nasal saline irrigations are also helpful in thinning secretions and may provide a mild benefit in nasal congestion. Although poorly studied, hyper- tonic saline irrigations have been found to improve patient comfort and quality of life, decrease medication use, and diminish the need for surgical therapy (27,28). This can be done with a 60 cc syringe that is cleaned once a week with rubbing alcohol and replaced every month to help limit the chances of contamination and reinfection. There are a number of commer- cially available delivery methods, including the water pik device and the netty pot. Nasal irrigations can be used for the duration of symptoms and also as a daily prophylactic measure in those who suffer from recurrent sinus infections and allergic symptoms. Leukotriene inhibitors are systemic medications that block the receptor and/or production of leukotrienes, potent lipid mediators that increase eosinophil recruitment, goblet cell production, mucosal edema, and airway remodeling. Their use in asthma has been well-documented (29), and the class of medications has been recently approved for the use in allergic rhini- tis. Their role in CRS and nasal polyposis is much less clear. One case series documents improved subjective and objective results in patients with nasal polyposis on anti-leukotrienes (30), but these studies must be better con- trolled before a judgment can be made on their utility in the management of CR S and nasal polyposis. MAXIMAL MEDICAL THERAPY FOR CRS The definition of maximal medical therapy is not universal. The various medi- cations used, timing, and doses may vary between practitioners and across the various specialties that treat this illness. The aim of maximal medical therapy is, however, uniform to promote drainage of obstructed sinus ostia and stagnant secretions, decrease mucosal edema, and eliminate inciting bacteria and/or fungus. 224 Chiu and Becker When treating CRS, a CT scan and nasal endoscopy are extremely useful in the initial patient encounter. Pretreatment objective findings of mucosal edema radiographically and/or purulent secretions, and mucosal edema can be used as a baseline to gauge improvement. Quality of life ques- tionnaires, such as the RSOM-31 form or SNOT-20, are also helpful in docu- menting subjective improvement through the course of therapy. Once the diagnosis of CRS is made, the treatment regimen consists of a prolonged course of a broad-spectrum antibiotic, oral steroid, nasal saline irri- gations, and nasal steroids sprays plus/minus nasal antihistamine sprays based on evidence of atopy (Table 1). The choice of antibiotic is best made with the aid of an endoscopically guided culture of the middle meatus. If one is not attainable, a broad-spectrum antibiotic that covers aerobic gram-positive and -negative bacteria and anaerobes should be chosen. The exact duration of therapy varies, but most preferred to treat with an initial three-week course, with an additional three weeks of therapy for sub-optimal patient response. The course of antibiotics can be accompanied by a three-week tapering course of oral steroids. A healthy patient is started with 60 mg of prednisone a day for four days, followed by 50 mg a day for four days, 40 mg a day for four days, 30 mg a day for three days, 20 mg a day for three days, and then finally 10 mg a day for three days. During this time period, the patients con- tinues to flush out their nose twice a day with hypertonic saline irrigations and nasal steroid sprays. Other adjunctive methods as outlined above may be tailored to each individual. After the initial three-week therapy, a repeat CT scan and nasal endo- scopy is performed. If there is improvement but still significant findings of sinusitis radiographically or endoscopically, an additional three weeks of antibiotics may be prescribed. After this, if the patient still has subjective symptoms and objective findings of sinusitis, the option of endoscopic sinus surgery is considered. INFECTIONS FOLLOWING FUNCTIONAL ENDOSCOPIC SINUS SURGERY Episodes of rhinosinusitis following functional endoscopic sinus surgery have a slightly different microbiology profile, but are open to more options Table 1 Maximal Medical Therapy for Chronic Sinusitis Broad-spectrum antibiotic—preferably based on a culture of the middle meatus Oral prednisone—starting at 60 mg/day and tapered down over three weeks Nasal hypertonic saline irrigations Nasal steroid spray Oral or nasal antihistamine spray if patient has preceding allergic rhinitis Mucolytic, i.e., guaifenesin Chronic Rhinosinusitis 225 for medical treatments. Endoscopic cultures are more easily obtained in open sinus cavities. This is important in the medical management of these patients, since there is a higher incidence of recovery of aerobic gram-negative organ- isms and S. aureus from patients who have had previous surgery compared to non-operated patients (31). Because of the high prevalence of these potentially antimicrobial-resistant organisms, empirical treatment of bacterial infections in these patients is not advised. Endoscopic-directed cultures should be obtained, and antibiotic coverage should be tailored to the corresponding sensitivities. Rigid nasal endoscopy can be used to direct a cultured swab or leukens trap to collect mucus directly from the involved maxillary or ethmoid sinus cavities. Studies have shown equal sensitivity between the different methods of culture collection and near- equivalence to the maxillary antral tap (13,14). Open sinus cavities are not only easier to culture, but they are also more accessible to topical medications. New alternatives in delivery methods of antibiotics and anti-inflammatory medications have been employed to directly administer powerful medications to diseased mucosa, and at the same time limit the systemic distribution and potential side effects (Table 2). These methods were ineffective in delivering medicine to the non-operated sinuses (32), but hold promise in those patients who have cavities that are widely exposed and easily accessible. NEBULIZED MEDICATIONS Nebulized medications have long been known to be an effective delivery mechanism in management of lower respiratory tract infections (33,34). Recently, this delivery method is being used to treat acute exacerbations of CRS in previously operated patients. Intravenous antibiotics are com- pounded to a nebulized form and delivered to the sinus mucosa through an aerosilezed machine. The choice of the nebulized antibiotic should be based on the results of a culture. Studies have shown an increase in disease- free intervals and greater 75% response over a 12-week follow-up period (35). Other medications, such as betamethasone, have been tried in an attempt to deliver a strong course of steroids topically and spare the patient from the harmful systemic side effects. Table 2 Alternatives to Oral Antibiotics in the Treatment of Sinusitis in Previously Operated Patients Topical antibiotic irrigations Nebulized antibiotics Intravenous antibiotics 226 Chiu and Becker TOPICAL ANTIBIOTIC IRRIGATIONS Topical preparations share a similar principle as the nebulized medications in that they represent an attempt to deliver intravenous preparations of anti- biotics in a topical form directly to the diseased mucosa. Although these preparations are in widespread use, their use has not yet been well documen- ted in the medical literature. Many of the commonly used preparations are directed at aerobic gram-negative organisms commonly seen in patients who have undergone previous surgery. Ceftazadime (36), gentamicin, and tobramycin are examp les. Tobramycin preparations have specifically been used in cystic fibrosis patients awaiting lung transplantation. The sinus and respiratory mucosa of these patients are frequently colonized with Pseudom onas. Transplant pro- grams have used antibiotic irrigations as a preventive measure against co lo- nization with Pseudomonas in patients awaiting a lung transplant (37). Studies examining the use of tobramycin irrigations in children with cystic fibrosis have shown a significant decrease in revision sinus procedures and polyp reformation (38). Topical irrigations aimed at the treatment of S. aureus sinus infections have their foundation in the vascular access literature. Methicillin-resistant S. aureus has been increasingly recovered from infected sinuses following sinus surgery. Mupirocin and betadine nasal irrigations are often being utilized in an attempt to treat these patients without using intravenous antibiotics. In addition to topical antibiotics, there are also other medications that have been used in a topical preparation in the treatment of CRS a nd nasal polyps. One c ase s eries demonstrated a decrease in the incidence of p ost-surgical recurrences of nasal polyps following the topical use of a diuretic (furosemide) (39). Antifungals are also used in a nasal irrigation. Amphotericin B has been shown in two prospective, non-controlled trials to decrease nasal polyps. These studies have a limited follow-up, but have shown the irrigations to be well toler- ated and have demonstrated good subjective and objective results (40,41). Even though many of these studies were not randomized or compared to a control group, they show potential for the management of the d ifficult-to-treat patients, where the other options are much more invasive (i.e., intravenous antibiotics and/or revision surgery). INTRAVENOUS ANTIBIOTICS The use of intravenous antibioti cs in the treatment of CRS has been tradi- tionally reserved for orbital and /or intracranial complications of the disease process. Their use has been well-documented in the management of pediatric sinusitis as an alternative to sinus surgery, as well as the treatment of pedia- tric orbital complications from ethmoid sinusitis (42,43). Antibiotics that cross the blood–brain barrier are used in conjunction with surgical therapy Chronic Rhinosinusitis 227 in the management of epidural collections stemming from frontal sinusitis, and in the management of a Pott’s puffy tumor or osteomyelitis of the fron- tal bone following an acute frontal sinus infection. At least a three-week course of a culture-based parenteral antibiotic is given. When indicated, this is followed, by an additional course of oral therapy to complete a total six weeks, of therapy. If a culture is unavailable, broad-spectrum antibiotics such as a combination of clindamycin or metronidazole with a fourth generation cephalosporin (cefepime or ceftazidime) or single therapy with a carbapenem (i.e., imipenem, meropenem) provide coverage for both anaerobes and aero- bes. There are some who are advocating the use of intravenous antibiotics in patients with CRS for patients who have either had unsuccessful surgery, or who have refused surgery, and base their rationale on comparing the disease process of this condition to that of osteomyelitis (44). There is both clinical and experimental evidence to suggest that the bone underlying the diseased sinus mucosa is involved in CRS. In experimentally induced sinusitis with P. aeruginosa using an animal model, Bolger et al. (45) demonstrated bone changes as early as four days after infection of a maxillary sinus. These changes included a coordinated osteoclasis and appositional bone formation adjacent to the sinus, as well as subsequent intramembranous bone formation. Clinical experience with computed tomography and nasal endoscopy has shown bone to undergo resorption followed by subsequent hyperostosis. In addition, studies have shown that ethmoid bone underwent rapid remo- deling in CRS that was histologically identical to the remodeling seen in osteomyelitis (46). Follow-up studies have demonstrated that rabbits inoculated with bac- terial organisms develop CRS and have histological evidence of chronic osteomyelitis (47,48). It appears that inflammation spreads through widened Haversian canal system within the bone and can spread to involve the oppo- site side. This may help to explain the recalcitrance of severe CRS to medical and surgical therapy, and the clinical observation for tendency of disease persistence in localized areas until the underlying bone is removed. The translation of this research to clinical use where intravenous antimicrobial therapy was given to patients with CRS has not been as persuasive. The studies published so far have largely been uncontrolled, non-randomized case series of a limited number of patients. The majority of indications are for recalcitrant infections resistant to oral antibiotics. The efficacy of the treatment varies among the studies (29–89%), but they are uniform in their relative high rate of complications (14–26%) (49,50) and have resulted in a relapse rate of 89% at a mean follow-up of 11.5 weeks in one study (51). They range from the benign, such as diarrhea, to the serious and life-threatening, such as septic thrombophlebitis and neutro- penia (52). Until more studies are performed, intravenous antibiotic use should be reserved for those select cases in which orbital and/or intracranial 228 Chiu and Becker complications arise, or in a chronic infection in which there are no other oral antibiotic alternatives. ASPIRIN DESENSITIZATION The classic Samter’s triad consists of nasal polyps, asthma, and sensitivity to aspirin or NSAIDS that exacerbates the above conditions. Recognition of this disease is not always easily made, since there can be a lag time between presentation of the components of the triad. Studies of these patients have shown that an increase in serum leukotrienes with response to aspirin (ASA) provocation that has a direct result in eosinophil recruitment with subsequent polyp formation and airway remodeling. Clinically, these patients are difficult-to-treat, and do relatively poorly following surgery as compared to non-ASA sensitive patients. ASA desensitization is the slow introduction of aspirin in a controlled, monitored setting. In vitro studies have shown a subsequent decrease in serum leukotrienes to normal levels one year following aspirin desensitiza- tion (53). Clinical studies have shown significant reductions in prednisone requirements, polyp reformation, and improvement in pulmonary function in follow-up as long as six years (54). Patients are often asked to take 650 mg twice a day for improved nasal breathing, but only 81 mg is required to maintain a desensitized state. CONCLUSION The recognition of CRS as a disease of both inflammation and infection is the first key step in its medical management. There are multiple choices of antibiotics and anti-inflammatory agents, and a combinat ion of bot h is needed for an extended period of time. Infections following sinus surgery are even more difficult to treat, and antibiotic coverage should be based on an endoscopically guided culture. There are currently more alternatives to conventional therapy in these patients in which medications can be applied topically to the diseased mucosa. REFERENCES 1. Benninger MS, Holzer SE, Lau J. Diagnosis and treatment of uncomplicated acute bacterial rhinosinusitis: summary of the Agency for Health Care Policy and Research evidence-based report. Otolaryngol Head Neck Surg 2000; 122:1–7. 2. Senior B, Glaze C, Benninger MS. Use of the rhinosinusitis disability index in rhinologic disease. Am J Rhinol 2001; 15:15–20. 3. Benninger MS, Ferguson BJ, Hadley JA, et al. Adult chronic rhinosinusitis: definitions, diagnosis, epidemiology, and pathophysiology. Otolaryngol Head Neck Surg 2003; 129:S1–S32. Chronic Rhinosinusitis 229 4. Taghizadeh F, Hadley JA, Osguthorpe JD. Pharmacological treatments for rhi- nosinusitis. Expert Opin 2002; 3:305–313. 5. Ponikau JU, Sherris DA, Kern EB, et al. The diagnosis and incidence of allergic fungal sinusitis. Mayo Clin Proc 1999; 74:877–884. 6. Bernstein JM, Ballow M, Schlievert PM, et al. A superantigen hypothesis for the pathogenesis of chronic hyperplastic sinusitis with massive nasal polyposis. Am J Rhinol 2003; 17:321–326. 7. Bolger WE, Leonard D, Dick EJ, et al. Gram negative sinusitis: a bacteriologic and histologic study in rabbits. Am J Rhinol 1997; 11:15–25. 8. Kaliner MA, Osguthorpe JD,Fireman P, et al. Sinusitis: bench to bedside. Current findings, future directions. Otolaryngol Head Neck Surg 1997; 116:S1–S20. 9. Gwaltney JM. Acute community-acquired sinusitis. Clin Infect Dis 1996; 23: 1209–1225. 10. Brook I. Microbiology and management of sinusitis. J Otolaryngol 1996; 25:249–256. 11. Finegold SM, Flynn MJ, Rose FV, et al. Bacteriologic findings associated with chronic maxillary sinusitis in adults. Clin Infect Dis 2002; 35:428–433. 12. Brook I, Yocum P, Frazier EH. Bacteriology and b-lactamase activity in acute and chronic maxillary sinusitis. Arch Otolaryngol Head Neck Surg 1996; 122:418–422. 13. Nadel DM, Lanza DC, Kennedy DW. Endoscopically guided cultures in chronic sinusitis. Am J Rhinol 1998; 12:233–241. 14. Brook I, Frazier EH, Foote PA. Microbiology of chronic maxillary sinusitis: comparison between specimens obtained by sinus endoscopy and by surgical drainage. J Med Microbiol 1997; 46:430–432. 15. Brook I, Thompson DH, Frazier EH. Microbiology and management of chronic maxillary sinusitis. Arch Otolaryngol Head Neck Surg 1994; 120:1317–1320. 16. Brook I. Microbiology and antimicrobial management of sinusitis. Otolaryngol Clin North Am 2004; 37:253–266. 17. Brook I, Yocum P. Antimicrobial management of chronic sinusitis in children. J Laryngol Otol 1995; 109:1159–1162. 18. Wallwork B, Coman W, Feron F, et al. Clarithromycin and prednisolone inhibit cytokine production in chronic rhinosinusitis. Laryngoscope 2002; 112:1827–1830. 19. Moriyama H, Yanagi K, Ohtori N, et al. Evaluation of endoscopic sinus surgery for chronic sinusitis: post-operative erythromycin therapy. Rhinology 1995; 33:166–170. 20. Clerico DM. Medical treatment of chronic sinus disease. In: Diseases of the Sinuses. London: BC Dekker, 2001. 21. Schleimer RP. Glucocorticoids: their mechanism of action and use in allergic diseases. Allergy: Principles and Practice. Mosby 2003; 912–914. 22. Nuutinen J, Ruoppi P, Suonpaa J. One dose beclomethasone dipropionate aerosol in the treatment of seasonal allergic rhinitis. A preliminary report. Rhinology 1987; 25:121–127. 23. Chalton R, Mackay I, Wilson R, Cole P. Double blind placebo controlled trial of betamethasone nasal drops for nasal polyposis. Br Med J Clin Res Educ 1985; 291:788. 230 Chiu and Becker 24. Mygand N. Effects of corticosteroid therapy in non-allergic rhinosinusitis. Acta Otolaryngol 1996; 116:164–166. 25. Damm M, Jungehulsing M, Eckel HE, et al. Effects of systemic steroid treat- ment in chronic polypoid rhinosinusitis evaluated with magnetic resonance imaging. Otolaryngol Head Neck Surg 1999; 120:517–523. 26. Radack K, Deck CC. Are oral decongestants safe in hypertension? An evalua- tion of the evidence and a framework for assessing clinical trials. Ann Allergy 1986; 56:396–401. 27. Wawrose SF, Tami TA, Amoils CP. The role of guaifenesin in the treatment of sinonasal disease in patients infected with the human immunodeficiency virus (HIV). Laryngoscope 1992; 102:1225–1228. 28. Brown SL, Graham SG. Nasal irrigations: good or bad? Curr Opin Otolaryn- gol Head Neck Surg 2004; 12:9–13. 29. Rabago D, Zgierska A, Mundt M, et al. Efficacy of daily hypertonic saline nasal irrigation among patients with sinusitis: a randomized controlled trial. J Fam Pract 2002; 51:1049–1055. 30. Riccioni G, Santilli F, D’Orazio F. The role of anti-leukotrienes in the treat- ment of asthma. Int J Immunopathol Pharmacol 2002; 15:171–182. 31. Parnes SM, Chuma AV. Acute effects on anti-leukotrienes on sinonasal polypo- sis and sinusitis. Ear Nose Throat J 2000; 79:18–20. 32. Nadel DM, Lanza DC, Kennedy DW. Endoscopically guided cultures in chronic sinusitis. Am J Rhinol 1998; 12:233–241. 33. Kobayashi T, Baba S. Topical use of antibiotics for chronic sinusitis. Rhinol Suppl 1992; 14:477–481. 34. Klepser ME. Role of nebulized antibiotics for the treatment of respiratory infections. Curr Opin Infect Dis 2004; 17:109–112. 35. Cole PJ. The role of nebulized antibiotics in treating serious resp infections. J Chemother 2001; 13:354–362. 36. Vaughan WC, Carvalho GC. Use of nebulized antibiotics for acute infections in chronic sinusitis. Otolaryngol Head Neck Surg 2002; 127:558–568. 37. Leonard DW, Bolger WE. Topical antibiotic therapy for recalcitrant sinusitis. Laryngoscope 1999; 109:668–670. 38. Davidson TM, Murphy C, Mitchell M, et al. Management of chronic sinusitis in cystic fibrosis. Laryngoscope 1995; 105:354–358. 39. Moss RB, King VV. Management of sinusitis in cystic fibrosis by endoscopic surgery and serial antimicrobial lavage. Reduction in recurrence requiring surgery. Arch Otolaryngol Head Neck Surg 1995; 121:566–572. 40. Passali D, Mezzedimi C, Passali GC, et al. Efficacy of inhalation form of furosemide to prevent postsurgical relapses of rhinosinusal polyposis. J Otorhi- nolaryngol Rel Spec 2000; 62:307–310. 41. Ricchetti A, Landis BN, Maffioli A, et al. Effect of anti-fungal nasal lavage with amphotericin B on nasal polyposis. J Laryngol Otol 2002; 116(4):261–263. 42. Ponikau JU, Sherris DA, Kita H, Kern EB. Intranasal antifungal treatment in 51 patients with chronic rhinosinusitis. J Allergy Clin Immunol 2002; 110(6):862–866. 43. Buchaman CA, Yellon RF, Bluestone CD. Alternative to endoscopic sinus surgery in the management of pediatric chronic rhinosinusitis refractory to oral antimicrobial therapy. Otolaryngol Head Neck Surg 1999; 120:219–224. Chronic Rhinosinusitis 231 44. Sobol SE, Marchand J, Tewfik TL. Orbital complications of sinusitis in children. J Otolaryngol 2002; 31:131–136. 45. Anand V, Levine H, Friedman M, et al. Intravenous antibiotics for refractory rhinosinusitis in nonsurgical patients: preliminary findings of a prospective study. Am J Rhinol 2003; 17:363–368. 46. Bolger WE, Leonard D, Dick EJ, et al. Gram negative sinusitis: a bacteriologic and histologic study in rabbits. Am J Rhinol 1997; 11:15–25. 47. Hwang P, Montone KT, Gannon FH, et al. Applications of in situ hybridiza- tion techniques in the diagnosis of chronic sinusitis. Am J Rhinol 1999; 13: 335–338. 48. Khalid AN, Hunt J, Perloff JR, Kennedy DW. The role of bone in chronic rhinosinusitis. Laryngoscope 2002; 112(11):1951–1957. 49. Perloff JR, Gannon FH, Bolger WE, et al. Bone involvement in sinusitis: an apparent pathway for the spread of disease. Laryngoscope 2000; 110:2095–2099. 50. Don DM, Yellon FR, Casselbrant ML, et al. Efficacy of a stepwise protocol that includes intravenous antibiotic therapy for the management of chronic sinusitis in children and adolescents. Arch Otolaryngol Head Neck Surg 2001; 127:1093–1098. 51. Gross ND, McInnes RJ, Hwang PH. Outpatient intravenous antibiotics for chronic rhinosinusitis. Laryngoscope 2002; 112:1758–1761. 52. Fowler KC, Duncavage JA, Murray JJ, et al. Chronic sinusitis and intravenous antibiotic therapy: resolution, recurrent and adverse events. J Allergy Clin Immunol 2003; 111:s85. 53. Tanner SB, Fowler KC. Intravenous antibiotics for chronic rhinosinusitis: are they effective? Curr Opin Otolaryngol Head Neck Surg 2004; 12:3–8. 54. Gosepath J, Schaefer D, Amedee RG, et al. Individual monitoring of aspirin desensitization. Arch Otolaryngol Head Neck Surg 2001; 127:316–321. 55. Stevenson DD, Hankammer MA, Mathison DA, et al. Aspirin densensitization treatment of aspirin sensitive patients with rhinosinusitis-asthma: long-term outcomes. J Allergy Clin Immunol 1996; 98:751–758. 232 Chiu and Becker [...]... antrostomy can be attributed to ciliary dyskinesia or to its occlusion by scar tissue Optimal postoperative care with office endoscopic debridement in the immediate postoperative period can prevent adhesions in the middle meatus and hence occlusion of the antrostomy Caldwell-Luc Procedure The Caldwell-Luc procedure has been used for over a hundred years to gain access to the maxillary sinus The Caldwell-Luc... (Fig 9) Similar to a concha bullosa, a paradoxical middle turbinate can narrow the OMU All of the above-mentioned anatomical findings are very prevalent and may be better labeled as anatomical variants, not anomalies Surgery is not indicated to treat them in the absence of clinical rhinosinusitis On the other hand, these anatomical findings need to be addressed during ESS that is indicated to treat CRS... sinus disease The cameras attach to the eyepiece of the endoscope, allow for easy viewing on a television monitor, and also offer the added advantage of using endoscopes for video recording to demonstrate anatomy and pathology to patients in the office, and for teaching purposes DIAGNOSTIC WORK-UP Medical History When a patient with sinus complaints is referred to the otolaryngologist, the evaluation...12 Surgical Management David Lewis Department of Otolaryngology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, U.S.A Nicolas Y Busaba Department of Otolaryngology, Harvard Medical School, VA Boston Healthcare System, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, U.S.A INTRODUCTION The surgical treatment... for two weeks prior to and at least one week after surgery Patients can often return to work after a couple of days; however, they are advised to avoid physical exertion for one to two weeks Additionally, they are instructed to avoid hot liquids and spicy foods to prevent intranasal vasodilation that might result in epistaxis Postoperative care is of utmost importance In order to prevent recurrence... rhinosinusitis that clears with antibiotics Although there is no agreed treatment algorithm for patients with recurrent rhinosinusitis, many rhinologists feel that if the frequency and severity of the patient’s symptoms are sufficient to interfere significantly with school or work, then surgery is a reasonable option (2) Prior to surgery, it is important to rule out non-sinus causes of a patient’s symptoms,... Management 255 Figure 16 Endoscopic view of an ethmoid mucocele (arrow) in a patient with previous endoscopic ethmoidectomy the surgery, secondary to entrapment of sinus mucosa (Figs 16 and 17) (28) Avoiding trauma to healthy mucosa and repeated postoperative cleaning and debridement of the ethmoid cavity can reduce the incidence of mucoceles External Ethmoidectomy An external ethmoidectomy requires that... become a valuable tool in image-guided sinus surgery (see following sections) INDICATIONS FOR PARANASAL SINUS SURGERY There is currently a wide range of indications for paranasal sinus surgery (Table 2) The most common indication is for chronic rhinosinusitis (CRS) Surgical Management 237 Table 2 Indications for Paranasal Sinus Surgery 1 Inflammatory or infectious rhinosinusitis Chronic rhinosinusitis that... Control of epistaxis 6 Orbital decompression for Graves’ ophthalmopathy 7 Removal of sinus foreign bodies 8 Management of nasolacrimal duct obstruction Patients who continue to have signs and symptoms of rhinosinusitis despite maximal medical therapy are often candidates for sinus surgery Maximum medical therapy has not been standardized, but typically involves four to six weeks of broad-spectrum oral antibiotics... One now has the ability to view the anatomy of the nasal cavity, and at times, the paranasal 233 234 Lewis and Busaba Figure 1 Light source and three 4-mm diameter rigid endoscopes The endoscopes have a zero, 30-degree, and 70-degree viewing angles sinuses themselves, up close and with remarkable detail (Fig 1) Nasal endoscopes use fiberoptic light cables to transmit light into the nose Special optical . therapy in non-allergic rhinosinusitis. Acta Otolaryngol 19 96; 1 16: 164 – 166 . 25. Damm M, Jungehulsing M, Eckel HE, et al. Effects of systemic steroid treat- ment in chronic polypoid rhinosinusitis. antimicrobial management of sinusitis. Otolaryngol Clin North Am 2004; 37:253– 266 . 17. Brook I, Yocum P. Antimicrobial management of chronic sinusitis in children. J Laryngol Otol 1995; 109:1159–1 162 . 18 infections in chronic sinusitis. Otolaryngol Head Neck Surg 2002; 127:558– 568 . 37. Leonard DW, Bolger WE. Topical antibiotic therapy for recalcitrant sinusitis. Laryngoscope 1999; 109 :66 8 67 0. 38. Davidson