426 REFERENCES 90. T. Wikman, M. Branicky, and W. Newman. Reflexive collision avoidance: A gen- eralized approach. In Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, NC, May 1993. 91. P. Jacobs, J. P. Laumond, and M. Taix. Efficient motion planners for nonholonomic mobile robots. IEEE International Conference on Intelligent Robots and Systems (IROS), Osaka, Japan, August 1991. 92. J. C. Latombe. A fast path planner for a car-like indoor mobile robot. In Proceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA, 1991. 93. J. Barraquand and J. C. Latombe. Nonholonomic multibody mobile robots: Con- trollability and motion planning in the presence of obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, May 1991. 94. A. De Luca and G. Oriolo. Local incremental planning for nonholonomic mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, May 1994. 95. T. Fraichard and A. Scheuer. Car-like robots and moving obstacles. In Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, May 1994. 96. A. Shkel and V. Lumelsky. The role of time constraints in the design of control for the Jogger’s Problem. In 34th IEEE Conference on Decision and Control,New Orleans, 1995. 97. G. Korn and T. Korn. Mathematical Handbook, McGraw-Hill, New York, 1968. 98. L. Hocking. Optimal Control, Clarendon Press, Oxford, 1991. 99. A. Shkel and V. Lumelsky. The Jogger’s Problem: Accounting for body dynamics in real-time motion planning. Automatica 33(7):1219–1233, 1997. 100. L. S. Pontryagin. The Mathematical Theory of Optimal Processes, Interscience Publishers, New York, 1962. 101. Unece: World robotics 2003. Technical report, United Nations Economic Commis- sion for Europe, Geneva, 2003. 102. R. Brooks. Planning collision-free motions for pick-and-place operations. Interna- tional Journal of Robotics Research 2(4), 1983. 103. V. Milenkovic and B. Huang. Kinematics of major robot linkages. In Proceedings of the 13th International Symposium on Industrial Robots, Chicago, 1983. 104. M. Mason. Compliance and force control for computer controlled manipulators. In Robot Motion, K. S. Narendra, ed., MIT Press, Cambridge, MA, 1982, pp. 305–322. 105. H. Behnke et al., eds. Fundamentals of Mathematics, Vol. II: Geometry, MIT Press, Cambridge, MA, 1974, Chapter 16. 106. E. Cheung and V. Lumelsky. Proximity sensing in robot manipulator motion plan- ning: System and implementation issues. IEEE Journal of Robotics and Automation 5(6):740– 751, 1989. 107. V. Lumelsky and K. Sun. A unified methodology for motion planning with uncer- tainty for 2d and 3d two-link robot arm manipulators. International Journal of Robotics Research 9(5):89–104, 1990. 108. T. Lozano-P ´ erez. Spatial planning: A configuration space approach. IEEE Trans- actions on Computers 32(3):108–120, February 1983. REFERENCES 427 109. John E. Hopcroft and Gordon Wilfong. Motion of objects in contact. International Journal of Robotics Research 4(4):32–46, 1986. 110. M. H. A. Newman. Elements of the Topology of Plane Sets of Points, Cambridge University Press, Cambridge, 1961. 111. D. McCloy and M. Harris. Robotics: An Introduction, Open University Press Robotics Series, Halsted Press, New York, 1986. 112. M. P. Groover, M. Weiss, R. N. Nagel, and N. G. Odrey. Industrial Robotics: Technology, Programming, and Applications, CAD/CAM, Robotics, and Computer Vision, McGraw-Hill, New York, 1986. 113. A. J. Critchlow. Introduction to Robotics, Macmillan, New York, 1985. 114. A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algo- rithms, Addison-Wesley, Reading, MA, 1974. 115. E. Cheung and V. Lumelsky. Real time path planning procedure for a whole- sensitive robot arm manipulator. Robotica 10:339–349, 1992. 116. N. Sliwa and R. Will. A flexible telerobotic system for space operations. In Pro- ceedings of the Space Telerobotics Workshop, Pasadena, CA, 1987. 117. T. Matsui and M. Tsukamoto. An integrated robot teleoperation method using mul- timedia display. In Proceedings of the 5th International Symposium of Robotics Research, Tokyo, Japan, 1989. 118. S. Hayati, T. Lee, K. Tso, P. Backes and J. Lloyd. A testbed for a unified teleoperated-autonomous dual-arm robotic system. In Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, 1990. 119. Thomas B. Sheridan. Telerobotics, Automation, and Human Supervisory Control, MIT Press, Cambridge, MA, 1992. 120. S. Seaney and B. Stankovic. Design and construction of the human tester algorithm experiment booth. Technical report, University of Wisconsin—Madison, Robotics Laboratory, 1992. Also, Technical report RL-92004. 121. Fei Liu. Multivariate analysis of human performance in motion planning. Technical report, MS thesis, University of Wisconsin— Madison, Department of Mechanical Engineering, 1997. Also Technical report RL-97003. 122. A. Basilevsky. Statistical Factor Analysis and Related Methods, John Wiley & Sons, New York, 1994. 123. I. T. Jolliffe. Principal Components Analysis, Springer-Verlag, New York, 1986. 124. J. Hajek. A Course in Nonparametric Statistics, Holden-Day, San Francisco, 1969. 125. R. Bradley. Distribution-Free Statistical Tests, Prentice-Hall, Englewood Cliffs, NJ, 1986. 126. H. Lindman. Analysis of Variance in Experimental Design, Springer-Verlag, New York, 1992. 127. J. Tukey D. Hoaglin, and F. Mosteller. Fundamentals of Exploratory Analysis of Variance, John Wiley & Sons, New York, 1991. 128. J. Bray and S. Maxwell. Multivariate Analysis of Variance, Sage Publications, Thousand Oaks, CA, 1985. 129. G. Dunteman. Introduction to Multivariate Analysis, Sage Publications, Thousand Oaks, CA, 1984. 130. I. Bernstein. Applied Multivariate Analysis, Springer-Verlag, New York, 1988. 428 REFERENCES 131. D. Hand and C. Taylor, Multivariate Analysis of Variance and Repeated Measures, Chapman and Hall, New York, 1987. 132. M. Crowder. Analysis of Repeated Measures, Chapman and Hall, New York, 1990. 133. V. Lumelsky and E. Cheung. Real-time collision avoidance in teleoperated whole- sensitive robot arm manipulators. IEEE Transactions on Systems, Man, and Cyber- netics, 23(5):194–203, 1993. 134. E. Cheung and V. Lumelsky. A sensitive skin system for motion control of robot arm manipulators. Journal of Robotics and Autonomous Systems 10:9 –32, 1992. 135. D. Um, B. Stankovic, K. Giles, T. Hammond and V. Lumelsky. A modularized sensitive skin for motion planning in an uncertain environment. In Proceedings of the 1998 IEEE Conference on Robotics and Automation, Leuven, Belgium, May 1998. 136. C. Miyazaki, A. Hirai, M. Fujie and V. Lumelsky. Development of proximity sensing system for obstacle detection. In Conference of the Japanese Society of Instrument and Control Engineers (SICE), Kanazawa, Japan, 1993. 137. V. Lumelsky, M. Shur, and S. Wagner. Sensitive Skin. World Scientific, Singapore, 2000. 138. S. P ´ erichon-Lacour, Z. Huang, Z. Suo, and S. Wagner. Stretchable gold conductors on elastomeric substrates. Applied Physics Letters 82(15):2404–2406, 2003. 139. S. Wagner, S. P ´ erichon-Lacour, P H. I. Hsu, J.C. Sturm and Z. Suo. Stretchable and deformable macroelectronics. In 61st IEEE Device Research Conference Digest, 2003. 140. D. Um and V. Lumelsky. Fault tolerance via analytic redundancy for a modularized sensitive skin. International Journal of Robotics and Automation, 15(4):99–108, 2000. INDEX J -space monotonicity, 312 PPP (Cartesian) robot arm, 276 XXP robot arms, 274 XXX robot arms, 274 l i -front monotonicity, 285 l i -rear monotonicity, 285 2-Link-Arm Algorithm, 210 A actuators, 18 algorithm convergence, 57 ANOVA, 362 arm base, 18 arm configuration, 18 arm joints range, 200 arm solution, 187 arm’s minimal configuration, 180 B Bug1 algorithm, 84 Bug2 algorithm, 90 Bug2 path, 109 BugM1 algorithm, 101 C canonical solution, 144, 159 Cartesian (PP) robot arm, 182 Cartesian coordinates, 19 Class 1 algorithms, 77 Class 2 algorithms, 77 collision avoidance, 48 complementary M-lines, 203 compliant motion, 40 computational complexity, 53 configuration space (C-space), 18 configuration space anisotropy, 285 connectedness, uniform, 252 connectivity graph, 305, 323 Sensing, Intelligence, Motion, by Vladimir J. Lumelsky Copyright 2006 John Wiley & Sons, Inc. contiguous sets, 107 conventional projection, 295 D deformation retract, 305 deformation retract theorems, 317 degrees of freedom (DOF), 18 direct kinematics solution, 30 dynamics, 33 E effect of vision, 104 end effector, 18 end effector, gross motion, 180 end effector, orientation, 180 Euler, Leonhard, 59 exhaustive search, 64 F feedback control, 37 Fraenkel’s algorithm, 65 Frenet frame, 146, 161 front contact, 229 front shadow, 229 G generalized cylinder, 277, 308 generic path, 321 geodesic curves in C-space, 194 graph searching, 61 guarded motion, 40 H heuristic algorithms, 50 hinged robot body, 15 429 430 INDEX hit point, 79, 106, 146, 186, 283 human motion planning, 329 humans, test factors, 349 I in-position condition, 93 input information, 15 intermediate target, 106 inverse kinematics solution, 30 J Jogger’s Problem, 140 joint coordinates, 19 joint value, 187 joint, arm joints, 18 Jordan Curve Theorem, 77, 195 K K ¨ onigsberg Bridge Problem, 59 kinematics, 29 Klein bottle, 77 L leave point, 79, 107, 146, 186, 283 LED (light-emitting diode), 393 limit areas of PR arm, 234 link, arm links, 18 local cycle, 207 local direction, 79, 107, 186, 282 lower bound, Class 1 algorithms, 103 lower bound, Class 2 algorithms, 103 M M-line (Main line), 61, 90, 106 M-plane, 281 MA, moving automaton, 78 Main line (M-line), 188, 280 main semiplane, 107 major linkage, 19, 180, 273 Mann–Whitney U-test, 358 MANOVA, 372 Maximum Turn Strategy, 144 maze searching, 60 maze-to-graph transition, 66 minimal projection, 295 Minimum Time Strategy, 144 minor linkage, 19, 180, 273 Moebius strip, 77 monotonicity property, 320 motion planning with complete information, 49 motion planning with incomplete information, 49 N near-canonical solution, 159 nonparametric statistics, 358 null hypothesis, 363 O obstacle, 15 obstacle monotonicity, 285 obstacle of Type I, 198, 286 obstacle of Type II, 198, 286 obstacle of Type III, 286 obstacle’s shadow, 190, 280 obstacles stalactites in C-space, 290 stalagmites in C-space, 290 one-way analysis of variance, 363 order statistics, 358 osculating plane, 146, 161 out-position condition, 93 P passing around an obstacle, 192 path coordinate frame, 146 Piano Movers paradigm, 49 planar arms, 180 point mass, 160 PP-arm Algorithm, 228 PR-arm Algorithm, 245 primary path frame, 160 Principal Components Analysis (PCA), 354, 355 prismatic joint, 18 prismatic-prismatic (PP) arm, 182 prismatic–revolute (PR) arm, 182 Procedure Compute T i -21, 110 Procedure Compute T i -22, 121 provable algorithms, 50 Q quasi-Bug2 path, 121 R radius of vision, 106 rank, statistics indexing, 358 INDEX 431 rear contact, 229 rear shadow, 229 regular grating, 262 revolute joint, 18, 180 revolute–prismatic (RP) arm, 182 revolute–revolute (RR) arm, 181 robot, 13 robot arm manipulator, 18 robot’s path, 20 RP-arm Algorithm, 233 RR-Arm Algorithm, 210 S scanning, 106 SCARA arm manipulator, 179 secondary path frame, 161 secondary semiplane, 107 sensitive skin, 17, 392 sensitive skin diagram, 390 separable arm, 180, 273 separation theorems, 261 sequential linkage, 18 SIM (Sensing–Intelligence–Motion) paradigm, 49, 55, 74, 177 skin properties, 392 skin, full coverage, 391 skin, locality identification, 391 sliding (prismatic) joint, 18, 180 space anisotropy, 273 space monotonicity, 273 statics, 33 step planning, 212 stopping path, 140 straight-line interpolation, 46 T Tarry’s Rule, 64 terrain acquisition, 125 test for target reachability, 89 Bug1, 88 Bug2, 99 topology of obstacles, 285 trajectory, 20 Tremaux, 64 two-way analysis of variance, 365 Type I monotonicity, 287 Type II monotonicity, 287 Type III monotonicity, 290 U uncertainty, 16 univariate analysis of variance, 355 universal lower bound, 80 V V-plane, 281 virtual boundary, 185, 194 virtual line, 192 virtual obstacle, 191 VisBug-21 Algorithm, 110 VisBug-22 Algorithm, 120 vision, adding to algorithms, 104, 213 W Wiener’s Algorithm, 64 workspace (W-space), 18 world coordinate frame, 146 . 252 connectivity graph, 305, 323 Sensing, Intelligence, Motion, by Vladimir J. Lumelsky Copyright 2006 John Wiley & Sons, Inc. contiguous sets, 107 conventional projection, 295 D deformation retract,. 349 I in-position condition, 93 input information, 15 intermediate target, 106 inverse kinematics solution, 30 J Jogger’s Problem, 140 joint coordinates, 19 joint value, 187 joint, arm joints, 18 Jordan. report, United Nations Economic Commis- sion for Europe, Geneva, 2003. 102. R. Brooks. Planning collision-free motions for pick-and-place operations. Interna- tional Journal of Robotics Research 2(4),