Đặc điểm của hệ thống hàng đợi Miêu tả của tiến trình đến phân bố khoảng thời gian đến Miêu tả của tiến trình phục vụ phân bố thời gian phục vụ Số lượng server Số lượng các vị trí đợi C
Trang 1Chương 2 Hàng đợi – Các hệ thống thời gian liên tục
2.1 Giới thiệu lý thuyết hàng đợi
2.1.1 Hàng đợi và đặc điểm
Trong bất cứ một hệ thống nào thì khách hàng đi đến các điểm cung cấp dịch vụ và rời khỏi hệ thống khi dịch vụ đã được cung cấp
Ví dụ:
Các hệ thống điện thoại: khi số lượng lớn khách hàng quay số để kết nối đến một trong những đường ra hữu hạn của tổng đài
Trong mạng máy tính: khi mà gói tin được chuyển từ nguồn tới đích và
đi qua một số lượng các nút trung gian Hệ thống hàng đợi xuất hiện tại mỗi nút ở quá trình lưu tạm thông tin tại bộ đệm
Hệ thống máy tính: khi các công việc tính toán và tuyến làm việc của
hệ thống yêu cầu dịch vụ từ bộ xử lý trung tâm và từ các nguồn khác
Những tình huống này được diễn tả bằng hình vẽ sau:
Hình 2-1 Mô hình chung của hệ thống hàng đợi
Người ta mô tả tiến trình đến và tiến trình phục vụ như thế nào?
Hệ thống có bao nhiêu server?
Có bao nhiêu vị trí đợi trong hàng đợi?
Có bất kỳ quy tắc nội bộ đặc biệt nào không (yêu cầu dịch vụ, mức
độ ưu tiên, hệ thống còn rỗi không)?
Đặc điểm của hệ thống hàng đợi
Miêu tả của tiến trình đến (phân bố khoảng thời gian đến) Miêu tả của tiến trình phục vụ (phân bố thời gian phục vụ)
Số lượng server
Số lượng các vị trí đợi Các quy tắc hàng đợi đặc biệt:
Click to buy NOW!
P D
F- XC hange Vie w
er
w
w
w
.d oc u -tra c k.
co m
Click to buy NOW!
P D F- XC hange Vie w
er
w w w
.d oc u -tra c k.
co m Click to buy NOW!
P D
F- XC hange Vie w
er
w
w
w
.d oc u -tra c k.
co m
Click to buy NOW!
P D F- XC hange Vie w
er
w w w
.d oc u -tra c k.
co m
Giáo trình hướng dẫn tìm hiểu về mô hình
chung của hệ thống liên lạc
Trang 2 Quy tắc phục vụ (FCFS, LCFS, RANDOM)
Thời gian rỗi (phân bố thời gian rỗi, khi mà thời gian rỗi bắt đầu )
Mức độ ưu tiên
Những luật khác Với một mạng cụ thể của hàng đợi gồm có các thông tin sau:
Sự kết hợp giữa các hàng đợi
Chiến lược định tuyến:
Xác định (Deterministic) Dựa vào một lớp Thống kê
Xử lý nghẽn mạng (khi bộ đệm tại đích bị đầy)
Số lượng khách hàng bị suy giảm Hàng đợi gốc bị nghẽn
Tái định tuyến Chúng ta sẽ xem xét ví dụ về các mạng hàng đợi đơn giản khác
S
S
S
Hình 2-2: Ví dụ về mạng hàng đợi mở
Hình 2-3 Ví dụ về mạng hàng đợi đóng
Click to buy NOW!
P D
F- XC hange Vie w
er
w
w
w
.d oc u -tra c k.
co m
Click to buy NOW!
P D F- XC hange Vie w
er
w w w
.d oc u -tra c k.
co m Click to buy NOW!
P D
F- XC hange Vie w
er
w
w
w
.d oc u -tra c k.
co m
Click to buy NOW!
P D F- XC hange Vie w
er
w w w
.d oc u -tra c k.
co m
Trang 3Phân tích hệ thống hàng đợi hoặc mạng hàng đợi bao gồm:
Phân tích giải tích
Quá trình mô phỏng
Cả hai phương pháp trên
Kết quả giải tích đạt được:
Yêu cầu ít tính toán
Đưa ra kết quả chính xác (không xảy ra lỗi xác suất)
Những kết quả thu được (các thông số dịch vụ) được chia thành hai nhóm lớn:
Dành cho người sử dụng
Dành cho các nhà cung cấp phục vụ Thông số quan trọng cho người sử dụng:
Trễ hàng đợi
Tổng trễ (bao gồm trễ hàng đợi và trễ phục vụ )
Số lượng khách hàng trong hàng đợi
Số lượng khách hàng trong hệ thống (gồm khách hàng chờ và khách hàng đang được phục vụ )
Xác suất nghẽn mạng (khi kích thước bộ đệm hữu hạn)
Xác suất chờ để phục vụ Thông số quan trọng cho các nhà cung cấp dịch vụ:
Khả năng sử dụng server
Khả năng sử dụng bộ đệm
Lợi ích thu được (thông số dịch vụ và các xem xét về kinh tế)
Lợi ích bị mất (thông số dịch vụ và các xem xét về kinh tế) Đáp ứng nhu cầu của người sử dụng
Chất lượng dịch vụ (QoS):
Tổn thất (PDF, mean)
Trễ (PDF, mean)
Jitter (PDF, mean)
Đưa ra các thông số trên để thu được:
Hàm phân bố xác suất
Các giá trị trung bình
Đo được các thời điểm cực đại, cực tiểu
Click to buy NOW!
P D
F- XC hange Vie w
er
w
w
w
.d oc u -tra c k.
co m
Click to buy NOW!
P D F- XC hange Vie w
er
w w w
.d oc u -tra c k.
co m Click to buy NOW!
P D
F- XC hange Vie w
er
w
w
w
.d oc u -tra c k.
co m
Click to buy NOW!
P D F- XC hange Vie w
er
w w w
.d oc u -tra c k.
co m
Trang 4Các hàm phân bố xác suất chứa đựng đầy đủ các thông tin liên quan đến các thông số quan tâm Tuy nhiên, việc thiết lập được các hàm này là khó thực hiện
Phân tích hệ thống hàng đợi được chia thành:
Phân tích ở thời gian ngắn (dựa trên một thời điểm nhất định)
Phân tích trong một khoảng thời gian (trạng thái ổn định) – (dựa trên tham số vô hạn)
Cấu trúc logic của phân tích hệ thống hàng đợi
Đo được nhiều thông số thống kê: mean-mean, moments, transform, pdf
Phân tích thời gian ngắn sử dụng cho các trừong hợp đơn giản- sử dụng các phương pháp mô phỏng hay xấp xỉ
Việc phân tích chính xác không thể cho áp dụng cho quá trình ổn định- sử dụng các phương pháp xấp xỉ, nếu không thì dùng các phương pháp mô phỏng
Tiếp theo chúng ta sẽ có các kết luận sau:
Kết luận chung: các giả thiết liên quan đến đặc tính và cấu trúc
của hệ thống hàng đợi đạt được kết quả chính xác ít nhất là cho các thông số hiệu năng trung bình với điều kiện ổn định
2.1.2 Các tham số hiệu năng trung bình
Ví dụ về hệ thống hàng đợi đơn giản
Hình 2-4 Hệ thống hàng đợi đơn giản
λ - tốc độ đến trung bình , thời gian đến trung bình -1/λ
µ - tốc độ phục vụ trung bình, thời gian phục vụ trung bình 1/µ
Với kích thước của bộ đệm là vô hạn, quy tắc phục vụ là FCFS (đến trước phục vụ trước )
Xét khoảng thời gian Δt, và xét những sự kiện đến trong khoảng thời gian này:
Click to buy NOW!
P D
F- XC hange Vie w
er
w
w
w
.d oc u -tra c k.
co m
Click to buy NOW!
P D F- XC hange Vie w
er
w w w
.d oc u -tra c k.
co m Click to buy NOW!
P D
F- XC hange Vie w
er
w
w
w
.d oc u -tra c k.
co m
Click to buy NOW!
P D F- XC hange Vie w
er
w w w
.d oc u -tra c k.
co m
Trang 5Hình 2-5 Các sự kiện đến trong thời gian Δt
Sự kiện A: Có 1 sự kiện đến trong Δt
Sự kiện B: không có sự kiện đến trong Δt
Sự kiện C: Có nhiều hơn 1 sự kiện đến trong Δt Giả sử rằng Δt →0 Như vậy ta sẽ có:
- Pr{A}= λ Δt
- Pr{B}= 1- λ Δt
- Giả thiết P{C}= 0,
với 1/λ là khoảng thời gian đến trung bình (thực tế được phân bố theo hàm mũ của tiến trình đến Poisson)
Xét khoảng thời gian Δt và xét những sự kiện đi trong khoảng thời gian này
Hình 2-6: Các sự kiện đi trong thời gian Δt
Sự kiện A: Có 1 sự kiện đi trong Δt
Sự kiện B: không có sự kiện đi nào trong Δt
Sự kiện C: Có nhiều hơn 1 sự kiện đi trong Δt Giả sử rằng Δt →0 Như vậy ta sẽ có:
Pr{A}= µΔt
Click to buy NOW!
P D
F- XC hange Vie w
er
w
w
w
.d oc u -tra c k.
co m
Click to buy NOW!
P D F- XC hange Vie w
er
w w w
.d oc u -tra c k.
co m Click to buy NOW!
P D
F- XC hange Vie w
er
w
w
w
.d oc u -tra c k.
co m
Click to buy NOW!
P D F- XC hange Vie w
er
w w w
.d oc u -tra c k.
co m
Trang 6Pr{B}= 1- µΔt
Giả thiết Pr{C}= 0, với 1/µ là thời gian phục vụ trung bình (thực tế được phân bố theo hàm mũ
nhiều sự đi trong khoảng Δt
Giả sử Pr{D}=0, (2-1)
Thực ra, nó chỉ ra rằng khi Δt nhỏ, sự kiện nhân (vừa đi vừa đến) là không xảy ra
Ngoài các giả thiết trên về đặc tính của tiến trình đến và tiến trình phục
vụ, còn có thêm các giả thiết sau:
Tiến trình đến là tiến trình Poisson với tham số λ
Khoảng thời gian đến phân bố theo hàm mũ với tham số 1/λ
Thời gian phục vụ phân bố theo hàm mũ với tham số 1/µ
Tiến trình đến là độc lập với tiến trình phục vụ và ngược lại
Để phân tích hệ thống hàng đợi cần hiểu khái niệm “Trạng thái hệ thống” Có thể định nghĩa thông qua biến thích hợp mô tả “ Sự phát triển theo thời gian” của hệ thống hàng đợi Để thuận tiện cho hệ thống hàng đợi biến được chọn sẽ là số khách hàng trong hệ thống tại thời điểm t
Trạng thái hệ thống tại t = N(t)= Số lượng khách hàng tại thời
điểm t (2-2)
Tức là :
với
điểm t
Có nghĩa là có N khách hàng trong hệ thống tại thời điểm t
Sử dụng trạng thái đầu tiên tại t=0, nếu ta có thể tìm pN(t) thì có thể
mô tả hệ thống có quan hệ về mặt thời gian như thế nào?
Tiếp theo, cho thời gian Δt →0
Xét các trạng thái có thể của hệ thống {0,1,…}(bằng đúng số lượng khách hàng trong hệ thống) tại thời điểm t ta có thể tìm trạng thái của
hệ thống tại thời điểm t+Δt như sau:
p0(t+Δt )= p0(t)(1-λΔt)+p1(t)µΔt, N=0
Trang 7
pN(t+Δt )= pN(t)(1-λ Δt-µΔt)+pN-1(t)λΔt+ pN+1(t)µΔt,
ta luôn có điều kiện phân bố chuẩn:
0 , 1 )
t t p
i
Tức là chuẩn hóa các pi(t), t≥0, thành các tính chất phân bố rời rạc theo thời gian
Ta có thể tính giới hạn khi Δt →0 và có hệ phương trình vi phân:
0 ), ( )
( )
( ) ( ) (
0 ), ( ) ( )
(
1 1
1 0
0
p t p dt
t dp
N t p t p dt
t dp
N N
N
(2-6)
Để giải ta phảo cho điều kiện ban đầu
Giả sử rằng hệ thống hàng đợi bắt đầu tại thời điểm t=0 với N khách hàng ở trong hệ thống, điều kiện ban đầu được viết như sau:
pi(0)=0, với i≠N
Sử dụng điều kiện ban đầu phù hợp hệ thống có thể được giải để được giải pháp thời gian ngắn (transient solution), một giải pháp phức tạp thậm chí cho các hệ đơn giản nhất
Bây giờ ta xét giải pháp trạng thái ổn định (equilibrium solution), t→∞ Khi đó ta có:
0 , 0 ) (
0 , 0 ) (
0
N dt
t dp
N dt
t dp
N
Vì vậy,
p0(t)=p0, với N=0
Định nghĩa ρ=λ /µ với ngụ ý rằng hệ thống hàng đợi ổn định với ρ <1,
ta có:
p1=ρp0
Gỉa sử tuân theo điều kiện phân bố chuẩn, ta có:
với giải pháp trạng thái ổn định cho phân bố trạng thái với ρ <1
Trang 8giải pháp trạng thái ổn định không phụ thuộc điều kiện phân bố ban đầu Tuy nhiên, nó cần điều kiện rằng tốc độ đến nhỏ hơn tốc độ phục
vụ
Các tham số hiệu năng trung bình
Số lượng trung bình của khách hàng trong hệ thống
Nhắc lại rằng phân bố của trạng thái ổn định cho số lượng khách hàng trong hệ thống khi t→∞ Ví vậy, có thể suy ra số khách hàng trung bình trong hệ thống từ phân bố trạng thái ổn định của hệ thống như sau:
] [
0
i i
ip N
Kết quả trên không áp dụng cho số trung bình khách hàng trong hệ thống tại một khoảng thời gian ngắn t (arbitrary time t)
Số lượng trung bình của khách hàng trong hàng đợi
Chú ý rằng số lượng khách hàng trong hàng đợi thì bằng với số lượng khách hàng trong hệ thống trừ đi 1 Sử dụng cùng các giả thiết ta có:
] [
2 0
1 1
1
p p
ip p
i N
E
i i i
i i
i Q
(2-13)
Chú ý rằng tổng bắt đầu từ i=1, do sự kiện khách hàng đợi chỉ đúng khi có nhiều hơn 0 khách hàng trong hệ thống
Chú ý rằng (i-1)!, do đang tìm số lượng khách hàng trung bình trong hàng đợi
Thời gian trung bình trong hệ thống
Thời gian này có thể được phân chia thành hai thành phần :
Thời gian đợi
Thời gian phục vụ
Tính toán các tham số hiệu năng này đòi hỏi những giả thiết thêm dựa trên đặc tính của hệ thống hàng đợi :
Quy tắc phục vụ khách hàng : Giả sử quy tắc “ first-come, first served” là khách hàng được phục vụ theo thứ tự như khi đến hệ thống
Phân bố trạng thái ổn định pk, k=0,1,…, cũng giống như phân bố xác suất của số lượng khách hàng trong hệ thống
Thời gian phục vụ dư trung bình của khách hàng sẽ dùng để phục
vụ khi tiến trình đến xảy ra với tốc độ 1/µ, cũng giống như vậy Vì vậy được gọi là đặc tính không nhớ
Sử dụng các giả thiết cho thời gian trung bình trong hệ thống của khách hàng :
) 1 (
1 1
1
0 0
k k
k k k k
p
k p
p
k W
Thời gian trung bình trong hàng đợi (thời gian đợi để được phục vụ)
Trang 9Với các giả thiết trên ta có:
) 1 (
k k
W
Chú ý rằng thời gian trung bình trong hàng đợi bằng với thời gian trung bình hệ thống trừ đi thời gian phục vụ:
) 1 (
1 ) 1 (
1 1
E W W
Có thể có khả năng rằng khách hàng phải chờ để được phục vụ
Sử dụng phân bố trạng thái ổn định pk, k=0,1,…ta chú ý rằng lượng khách hàng đến luôn phải đợi để được phục vụ nếu số lượng khách hàng lớn hơn 0 trong hệ thống
Vì vậy,
Sử dụng server
Ý nghĩa vật lý của tham số hiệu năng là nó đưa ra khoảng thời gian khi server bận vì vậy,
Các cách tiếp cận đã trình bày được sử dụng để phân tích bất kỳ một
hệ thống hàng đợi đều phải có các giả thiết sau:
Tiến trình đến là tiến trình poisson, có nghĩa là khoảng thời gian đến được phân bố theo hàm mũ
Tiến trình đến với tốc độ đến thay đổi
Hệ thống có một hoặc nhiều server
Thời gian phục vụ có dạng phân bố hàm mũ
Tiến trình đến là độc lập với các tiến trình phục vụ và ngược lại
Có vô hạn các vị trí đợi hữu hạn trong hệ thống
Tất cả các giả thiết tạo thành lớp đơn giản nhất của hệ thống hàng đợi
2.2 Nhắc lại các khái niệm thống kê cơ bản
2.2.1 Tiến trình điểm
Các tiến trình đến là một tiến trình điểm ngẫu nhiên, với tiến trình này chúng ta có khả năng phân biệt hai sự kiện với nhau Các thông tin về
sự đến riêng lẻ (như thời gian phục vụ, số khách hàng đến) không cần biết, do vậy thông tin chỉ có thể dùng để quyết định xem một sự đến có thuộc quá trình hay không
Trang 10Mô tả tiến trình
Chúng ta xem xét qui luật của tiến trình điểm thông thường, nghĩa là loại trừ các tình huống đến kép Xét số lần cuộc gọi đến với cuộc gọi thứ i tại thời điểm Ti :
Lần quan sát thứ nhất tại T0 = 0
Số các cuộc gọi trong nửa khoảng thời gian mở [0, t] là Nt, ở đây Nt là một biến ngẫu nhiên với các tham số thời gian liên tục và thời gian rời rạc, khi t tăng thì Nt không bao giờ giảm
Khoảng thời gian giữa hai lần đến là:
Khoảng thời gian này gọi là khoảng thời gian giữa hai lần đến Sự phân bố của tiến trình này gọi là sự phân bố khoảng đến
Tương ứng với hai biến ngẫu nhiên Nt và Xi, hai tiến trình này có thể
được mô tả theo hai cách:
Cách biểu diễn số Nt : khoảng thời gian t giữ không đổi, và ta xét biến ngẫu nhiên Nt cho số cuộc gọi trong khoảng thời gian t
Cách biểu diễn khoảng ti : số các cuộc gọi đến là hằng số (n), và ta xét biến ngẫu nhiên ti là khoảng thời gian diễn ra n cuộc gọi
Mối quan hệ căn bản giữa hai cách biểu diễn thể hiện đơn giản như sau:
n i i
T
1
Điều này được biểu diễn bằng đẳng thức Feller - Jensen :
N n pT t
Phân tích tiến trình điểm có thể dựa trên cả hai cách này, về nguyên tắc chúng tương đương với nhau Cách biểu diễn khoảng thời gian tương ứng với việc phân tích chuỗi thời gian thông thường
Cách biểu diễn số không song song với phân tích chuỗi thời gian Số liệu thống kê được tính toán trên mỗi đơn vị thời gian và ta có các mức trung bình thời gian
Đặc tính của tiến trình điểm
Phần này chúng xem xét đặc tính của nó thông qua cách biểu diễn số
Tính dừng (tính đồng nhất thời gian)(Stationarity-time homogeneity) :
Tính chất này có thể mô tả là cho dù ở vị trí nào trên trục thời gian cũng vậy, phân bố xác suất tiến trình điểm là độc lập với thời điểm quan sát Định nghĩa sau đây được sử dụng trong thực tế:
Trang 11Định nghĩa : Cho tuỳ ý t2 > 0 và với mỗi k 0 Xác suất mà k cuộc gọi đến trong khoảng thời gian [t1, t1+t2] là độc lập với t1, nghĩa là với mọi t, k ta có:
p ( t1t2 t1) ( t1t2t t1t) (2-22)
Đây là một trong nhiều định nghĩa về tính dừng của tiến trình điểm các cuộc gọi đến
Tính độc lập (Independence)
Tính chất này thể hiện là: tương lai của tiến trình chỉ phụ thuộc vào trạng thái hiện tại
Định nghĩa : xác suất có k sự kiện (với k nguyên và lớn hơn hoặc bằng 0) trong khoảng [t1, t1+t2] là độc lập với các sự kiện trước thời điểm t1 :
p ( t2 t1) | t1 t0 ( t2 t1) (2-23)
Nếu điều này đúng với mọi t thì tiến trình này là tiến trình Markov: trạng thái tiếp theo chỉ phụ thuộc vào trạng thái hiện tại, nhưng độc lập với việc nó đã có được như thế nào Đây chính là tính chất không nhớ Nếu tính chất này chỉ xảy ra tại các thời điểm nào đó (ví dụ thời điểm đến), thì những điểm này được gọi là các điểm cân bằng hay các điểm tái tạo Khi đó tiến trình có nhớ giới hạn, và ta cần lưu lại điểm tái tạo gần nhất
Tính đều đặn (Regularity)
Như đã nói ta loại trừ các tiến trình của nhiều cuộc gọi vào một thời điểm, vậy ta có định nghĩa sau:
Định nghĩa : một tiến trình điểm được gọi là đều đặn nếu xác suất xảy ra với nhiều hơn một sự kiện ở cùng một thời điểm bằng không:
(N N )2o(t), khi:t0,o(t)0
2.2.2 Tiến trình Poisson
Tiến trình Poisson là tiến trình điểm quan trọng nhất bởi vì vai trò của
nó cũng quan trọng như vai trò của phân bố chuẩn trong phân bố thống kê Tất cả những tiến trình điểm ứng dụng khác đều là dạng tổng quát hoá hay dạng sửa đổi của tiến trình Poisson Tiến trình Poisson mô tả rất nhiều tiến trình trong đời sống thực tế, do nó có tính ngẫu nhiên nhất