thu^o.c tuy^en tnh.. Tnh di.nh thu.c Wronski cu'a chung... d^o.c l^a.p tuy^en tnh.Tnh di.nh thu.c Wronski cu'a chung.
Trang 12) Gia'i phu.o.ng trnh: √y.y” = y0
HD gia’i: D- a.t y0 = p ⇒ y” = pdp
dy (ham theo y) Phu.o.ng trnh tro.' thanh: √ypdp
Ngoai ra y = c: hang cu~ng la nghi^e.m
3) Gia'i phu.o.ng trnh: a(xy0+ 2y) = xyy0
HD gia’i: a(xy0+ 2y) = xyy0 ⇒ x(a − y)y 0 = −2ay
N^eu y 6= 0, ta co phu.o.ng trnh tu.o.ng du.o.ng vo.i a − y
2a
x dx ⇔ x
2a y a e−y = C
Ngoai ra y = 0 cu~ng la nghi^e.m
4) Gia'i phu.o.ng trnh: y” = y0ey
HD gia’i: D- a.t y0 = p ⇒ y” = pdp
dy thay vao phu.o.ng trnh: pdp
Ngoai ra y = C : hang la m^o.t nghi^e.m
5) Gia'i phu.o.ng trnh: xy0 = y(1 + ln y − ln x) vo.i y(1) = e
Trang 2HD gia’i: D- u.a phu.o.ng trnh v^e: y0 = y
6) Gia'i phu.o.ng trnh: y”(1 + y) = y02+ y0
HD gia’i: D- a.t y0 = z(y) ⇒ z0 = zdz
dy thay vao phu.o.ng trnh: dz
Ngoai ra y = C la nghi^e.m
Tom la.i nghi^e.m t^o'ng quat: y = C, y = C − x; 1
C1 ln |C1y + C1− 1| = x + C2
7) Gia'i phu.o.ng trnh: y0 = y 2 − 2
x 2
HD gia’i: Bi^en d^o'i (3) v^e da.ng: x2y0 = (xy)2− 2 (∗)
D- a.t z = xy ⇒ z0 = y + xy0 thay vao (∗) suy ra:
8) Gia'i phu.o.ng trnh: yy” + y02 = 1
HD gia’i: D- a.t y0 = z(y) ⇒ y” = z.dz
Nghi^e.m t^o'ng quat: y 2 + C1 = (x + C2) 2
9) Gia'i phu.o.ng trnh: 2x(1 + x)y0 − (3x + 4)y + 2x√1 + x = 0
Trang 3Bi^en thi^en hang s^o: C0 = − 1
y0(0) = 0
HD gia’i: D- a.t z = y0 → y” = z.dz
dy phu.o.ng trnh tro.' thanh z.dz
√
e 2y − 1 = x + ε d¯ˆo’i biˆe´n t =
√
e 2y − 1 arctg √
e 2y − 1 = x + ε y(0) = 0 ⇒ ε = 0. V^a.y nghi^e.m ri^eng thoa' di^eu ki^e.n d^e bai: y = 1
2ln(tg
2 x + 1).
11) Tm nghi^e.m ri^eng cu'a phu.o.ng trnh: xy0+ 2y = xyy0
thoa' ma~n di^eu ki^e.n d^au y(−1) = 1
HD gia’i: Vi^et phu.o.ng trnh la.i: x(1 − y)y0 = −2y; do y(−1) = 1 n^en y 6≡ 0 D- u.a v^ephu.o.ng trnh tach bi^en: 1 − y
dx x
tch ph^an t^o'ng quat: x 2 ye−y = C Thay di^eu ki^e.n vao ta du.o c C = 1
e V^a.y tch ph^anri^eng c^an tm la: x 2 ye 1−y = 1
12) Bang cach da.t y = ux, ha~y gia'i phu.o.ng trnh: xdy − ydx − px 2 − y 2 dx = 0 (x > 0)
HD gia’i: D- a.t y = ux; du = udx + xdu thay vao phu.o.ng trnh va gia'n u.o.c x: xdu −
13) Tm nghi^e.m ri^eng cu'a phu.o.ng trnh: xy0 = px 2 − y 2 + y
thoa' ma~n di^eu ki^e.n d^au y(1) = 0
Trang 4⇐⇒ arcsin u = ln Cx
thoa' ma~n di^eu ki^e.n d^au y(1) = 0 khi C = 1 V^a.y nghi^e.m y = ±x
14) Tm nghi^e.m ri^eng cu'a phu.o.ng trnh: y0sin x = y ln y
thoa' ma~n di^eu ki^e.n d^au y(π
⇐⇒ ln y = C tanx
2 ⇐⇒ y = eC tan
x 2
thoa' ma~n di^eu ki^e.n d^au y(π
2) = e khi C = 1 V^a.y y = etan
x
2
15) Tm nghi^e.m ri^eng cu'a phu.o.ng trnh: (x + y + 1)dx + (2x + 2y − 1)dy = 0
thoa' ma~n di^eu ki^e.n d^au y(0) = 1
HD gia’i: D- a.t x + y = z =⇒ dy = dz − dx
phu.o.ng trnh thanh: (2 − z)dx + (2z − 1)dz = 0; gia'i ra x − 2z − 3 ln |z − 2| = C V^a.y
x + 2y + 3 ln |x + y − 2| = C
thoa' ma~n di^eu ki^e.n d^au y(0) = 1 khi C = 2
16) Bang cach da.t y = 1
z r^oi da.t z = ux,ha~y gia'iphu.o.ng trnh: (x 2 y 2 − 1)dy + 2xy 3 dx = 0
HD gia’i: D- a.t y = 1
z du.o c: (z 2 − x 2 )dz + 2zxdx = 0; r^oi da.t z = ux, du.o c
(u 2 − 1)(udx + xdu) + 2udx = 0
Trang 518) Tm nghi^e.m t^o'ng quat cu'a cac phu.o.ng trnh sau: y0− y = y 2
HD gia’i: D- ^ay la phu.o.ng trnh tach bi^en va co nghi^e.m t^o'ng quat la
20) Tm nghi^e.m cu'a cac phu.o.ng trnh sau: y0− y = y 3
HD gia’i: D- ^ay la phu.o.ng trnh tach bi^en va co nghi^e.m t^o'ng quat la
Trang 6Xem phu.o.ng trnh b^a.c hai d^oi vo.i y0: 4 = (x 4 + y4)2 ⇒ y 0
24) Gia'i phu.o.ng trnh: y2+ x2y0 = xyy0
HD gia’i: Vi^et phu.o.ng trnh la.i y0 =
y 2
x 2
y
x − 1 d^ay la phu.o.ng trnh thu^an nh^at, gia'i
ra du.o c nghi^e.m t^o'ng quat: y2 = Cxeyx
25) Tm nghi^e.m ri^eng cu'a phu.o.ng trnh: (x + y − 2)dx + (x − y + 4)dy = 0
thoa' ma~n di^eu ki^e.n d^au y(1) = 0
HD gia’i: D- a.t
(
y = v + 3. thay vao phu.o.ng trnh du.o c:
(u + v)du + (u − v)dv = 0, d^ay la phu.o.ng trnh thu^an nh^at co tch ph^an t^o'ng quat la:
u 2 + 2uv − v 2 = C
V^a.y tch ph^an t^o'ng quat cu'a phu.o.ng trnh ban d^au la: x 2 + 2xy − y 2 − 4x + 8y = C
26) Gia'i phu.o.ng trnh (x + y − 2)dx + (x − y + 4)dy = 0
27) Tm tch ph^an t^o'ng quat cu'a phu.o.ng trnh sau: b) y0 = 2xy
x 2 − y 2
HD gia’i: D- ^ay la phu.o.ng trnh da'ng c^ap, ta da.t z = y
z Khi do phu.o.ng trnh tr^entro.' thanh xz0 = z(1 + z
V^a.y nghi^e.m cu'a phu.o.ng trnh da~ cho la x 2 + y 2 = C1y, C1 6= 0.
28) Tm nghi^e.m t^o'ng quat cu'a cac phu.o.ng trnh sau: y0 = 2x + y − 1
Trang 7Gia'i phu.o.ng trnh nay ta du.o c nghi^e.m 10u + 7 ln |5u + 9| = 25x + C.
V^a.y nghi^e.m cu'a phu.o.ng trnh da~ cho la 10y + 7 ln |10x + 5y = 9| − 5x = C.
29) Tm tch ph^an t^o'ng quat cu'a cac phu.o.ng trnh sau:
V^a.y nghi^e.m cu'a phu.o.ng trnh da~ cho la y 2 − x 2 − 2xy − 8y + 4x = C1.
30) a) Tm mi^en ma trong do nghi^e.m cu'a bai toan Cauchy cu'a phu.o.ng trnh
sau d^ay t^on ta.i va duy nh^at y0 = √
x − y.
b) Tm tch ph^an t^o'ng quat cu'a cac phu.o.ng trnh sau: (x 2 − y 2 )dy − 2xydx = 0.
HD gia’i:
a) Bai toan Cauchy co duy nh^at nghi^e.m trong mi^en
D = {(x, y) ∈ R 2 |x − y ≥ δ} vo.i δ > 0 tuy y
b) D- u.a phu.o.ng trnh v^e da.ng dy
V^a.y nghi^e.m cu'a phu.o.ng trnh da~ cho la x 2 + y 2 = C1y, C1 6= 0.
31) a) Chu.ng minh rang h^e cac vecto.{e 2x , xe2x, x2} la h^e d^o.c l^a.p tuy^en tnh
b) Tm tch ph^an t^o'ng quat cu'a phu.o.ng trnh sau: (x − y)dy − (x + y)dx = 0;
HD gia’i:
a) Dung di.nh ngh~a ki^e'm tra h^e d^o.c l^a.p tuy^en tnh
b) D- u.a phu.o.ng trnh v^e da.ng y0 = x + y
x − y D- ^ay la phu.o.ng trnh da'ng c^ap, ta da.t
32) a) Chu.ng minh rang h^e cac vecto.{cos 2 2x, sin22x, 2} la h^e phu thu^o.c tuy^en tnh
Tnh di.nh thu.c Wronski cu'a chung
b) Tm tch ph^an t^o'ng quat cu'a phu.o.ng trnh sau: (x − 2y + 1)dy − (x + y)dx = 0.
Trang 8HD gia’i:
a) H^e nay phu thu^o.c tuy^en tnh v 2 cos 2 2x + 2 sin22x − 2 = 0
b) Phu.o.ng trnh nay co th^e' du.a v^e da.ng da'ng c^ap, ta du.o c
33) Gia'i phu.o.ng trnh: y 2 + x 2 y0 = xyy0
HD gia’i: Phu.o.ng trnh thu^an nh^at: da.t y = zx → y0 = z0x + z
Phu.o.ng trnh tro.' thanh z − 1
34) Gia'i phu.o.ng trnh y 2 + x 2 y0 = xyy0
HD gia’i: Vi^et phu.o.ng trnh la.i y0 =
y 2
x 2
y
x − 1 d^ay la phu.o.ng trnh thu^an nh^at, gia'i
ra du.o c nghi^e.m t^o'ng quat: y 2 = Cxeyx
35) Gia'i phu.o.ng trnh: y” cos y + (y0) 2 sin y = y0
HD gia’i: y = C : hang la m^o.t nghi^e.m
y 6= C (hang) D- a.t y0 = p ⇒ y” = pdp
dy (ham theo y)thay vao (2): dp
dycos y + p sin y = 1: phu.o.ng trnh tuy^en tnh
Phu.o.ng trnh thu^an nh^at co nghi^e.m t^o'ng quat: p = C cos y.
bi^en thi^en hang s^o du.o c C = tgy + C1
tu do p = dy
dx = sin y + C1cos y ⇔
dy sin y + C1cos y = dx
tch ph^an di d^en: 1
pC 2
1 + 1ln
C1
= x + C2
36) Gia'i phu.o.ng trnh: y0+ 1
2x − y 2 = 0
HD gia’i: Coi x = x(y) la ham cu'a y ta co: y0 = 1
x 0 thay vao phu.o.ng trnh:
Trang 92x − y 2 = 0 ⇔ x0+ 2x = y 2 : phu.o.ng trnh tuy^en tnh
Nghi^e.m t^o'ng quat cu'a phu.o.ng trnh thu^an nh^at: x = Ce−2y
Bi^en thi^en hang s^o: C0(y) = y 2 e 2y ⇒ C(y) = 1
37) Gia'i phu.o.ng trnh: xy” = y0+ x 2
HD gia’i: D- a.t y0 = p, (1) tro.' thanh: xp0 − p = x 2 tuy^en tnh
Nghi^e.m t^o'ng quat cu'a phu.o.ng trnh thu^an nh^at: p = Cx
Bi^en thi^en hang s^o → C(x) = x + C1
38) Gia'i phu.o.ng trnh: y02+ yy” = yy0
HD gia’i: D- a.t p = y0(p 6= 0), phu.o.ng trnh tu.o.ng du.o.ng vo.i: p 2 + ypdp
y, bi^en thi^en hang s^o
Chu y: V^e trai (yy0)0 = yy0 ⇔ yy 0 = C1e x ⇔ ydy = C1e x dx ⇔ y 2 = 2C1e x + C2
39) Gia'i phu.o.ng trnh: ye y = y0(y 3 + 2xe y ) vo.i y(0) = −1
40) Gia'i phu.o.ng trnh: xy” = y0+ x
HD gia’i: D- a.t y0 = p; phu.o.ng trnh tro.' thanh: p0 − 1
xp = 1
Nghi^e.m t^o'ng quat: p = Cx bi^en thi^en hang s^o: C = ln |x| + C1
Trang 10⇒ p = dy
dx = (ln |x| + C1)x ⇒ y =
Z (ln |x| + C1)xdx + C2
HD gia’i: Nghi^e.n t^o'ng quat cu'a phu.o.ng trnh thu^an nh^at y = Ce−x22
bi^en thi^en hang s^o: C(x) = (x 2 − 2)e − x2
2 + ε
V^a.y nghi^e.m t^o'ng quat: y = εe−x22 + x 2 − 2.
42) Gia'i phu.o.ng trnh: (x 2 − y)dx + xdy = 0
HD gia’i: Phu.o.ng trnh vi^et la.i: xy0− y = −x 2, phu.o.ng trnh thu^an nh^at: xy0− y = 0
co nghi^e.m t^o'ng quat: y = Cx bi^en thi^en hang s^o suy ra C = −x + ε
V^a.y nghi^e.m t^o'ng quat : y = −x 2 + εx
44) Gia'i phu.o.ng trnh: (x + 1)(y0+ y 2 ) = −y
HD gia’i: Xet y 6= 0, bi^en d^o'i phu.o.ng trnh v^e da.ng y0+ 1
ngoai ra y = 0 cu~ng la nghi^e.m
V^a.y nghi^e.m t^o'ng quat: y = 1
(x + 1)(ln |x + 1| + ε) va y = 0 nghi^e.m k di
45) Gia'i phu.o.ng trnh: 2xy0+ y = 1
1 − x
HD gia’i: D- u.a phu.o.ng trnh v^e da.ng y0 + 1
2xy =
1 2x(1 − x) phu.o.ng trnh tuy^entnh c^ap 1
Trang 11Nghi^e.m t^o'ng quat: y = √C
x, bi^en thi^en hang s^o:
C0(x) =
√ x 2x(1 − x) ⇒ C = 1
Nghi^e.m t^o'ng quat: y = (C − cos x)x
47) Gia'i phu.o.ng trnh: y0cos 2 x + y = tgx thoa' y(0) = 0
HD gia’i: Phu.o.ng trnh tuy^en tnh → NTQ y = Ce−tgx; y = tgx − 1 (m^o.t nghi^e.mri^eng)
⇒ NTQ: y = Ce−tgx+ tgx − 1
y(0) = 0 ⇒ C = 1 V^a.y nghi^e.m ri^eng c^an tm: y = tgx − 1 + e−tgx.
48) Gia'i phu.o.ng trnh: y0√
1 − x 2 + y = arcsin x thoa' y(0) = 0
HD gia’i: Nghi^e.m t^o'ng quat cu'a phu.o.ng trnh tuy^en tnh thu^an nh^at: y = Ce−arcsinx
D^e~ th^ay nghi^e.m ri^eng: y = arcsinx − 1
⇒ NTQ: y = Ce−arcsinx+ arcsinx − 1
y(0) = 0 ⇒ C = 1 ⇒ nghi^e.m ri^eng c^an tm: y = e−arcsinx+ arcsinx − 1
49) Tm nghi^e.m ri^eng cu'a phu.o.ng trnh: y0 = 1
2x − y 2thoa' ma~n di^eu ki^e.n d^au y(1) = 0
HD gia’i: Xem x la ^a'n ham, thay y0 = 1
thoa' ma~n di^eu ki^e.n d^au y(1) = 0 khi C = 3
4.V^a.y nghi^e.m tho'a ma~n di^eu ki^e.n d^au: x = 3
Trang 1250) Gia'i phu.o.ng trnh sau d^ay, bi^et rang sau khi da.t y = z
x 2, ta nh^a.n du.o cm^o.t phu.o.ng trnh vi ph^an c^ap hai co m^o.t nghi^e.m ri^eng y∗ = 1
x
2 , NTQ cu'a phu.o.ng trnh thu^an nh^at:
z = C1cos x + C2sin x V^a.y NTQ cu'a phu.o.ng trnh ban d^au la:
51) Tm nghi^e.m ri^eng cu'a phu.o.ng trnh: ye y = y0(y 3 + 2xe y )
thoa' ma~n di^eu ki^e.n d^au y(0) = −1
HD gia’i: Xem x la ^a'n ham, thay y0 = 1
x 0, phu.o.ng trnh thanh x0 − 2
yx = y
2 e−y.NTQ cu'a phu.o.ng trnh tuy^en tnh thu^an nh^at tu.o.ng u.ng la x = C
y; bi^en thi^en hangs^o du.o c C(y) = −e−y+ C Nhu v^a.y NTQ la x = C
ye y Thay di^eu ki^e.n d^au xac di.nhdu.o c C = 1
e Tu do KL
52) Tm nghi^e.m cu'a phu.o.ng trnh y0− y = cos x − sin x
tho'a di^eu ki^e.n y bi cha.n khi x → ∞
HD gia’i: Gia'i phu.o.ng trnh tuy^en tnh ra y = Ce x + sin x
tho'a di^eu ki^e.n y bi cha.n khi x → ∞ khi C = 0
53) Tm nghi^e.m ri^eng cu'a phu.o.ng trnh: y0+ sin y + x cos y + x = 0
thoa' ma~n di^eu ki^e.n d^au y(0) = π
, phu.o.ng trnh thanh phu.o.ng trnh tuy^en tnh
z0 + z = −x Gia'i ra: z = 1 − x + Ce−x
thoa' ma~n di^eu ki^e.n d^au y(0) = π
2 khi C = 0 V^a.y nghi^e.m ri^eng y = 2 arctan(1 − x)
Trang 1354) Tm nghi^e.m t^o'ng quat cu'a cac phu.o.ng trnh sau: y0− x tan y = x
cos y
HD gia’i: D- a.t z = sin y, khi do phu.o.ng trnh da~ cho tro.' thanh z0− xz = x. D- ^ay laphu.o.ng trnh tuy^en tnh c^ap 1 va co nghi^e.m t^o'ng quat la z = Cex22 − 1
V^a.y nghi^e.m cu'a phu.o.ng trnh da~ cho la sin y = z = Cex22 − 1
55) Tm nghi^e.m t^o'ng quat cu'a cac phu.o.ng trnh sau: y0− xy = x
HD gia’i: D- ^ay la phu.o.ng trnh Bernoulli va co nghi^e.m t^o'ng quat la
Trang 1460) Tm nghi^e.m cu'a cac phu.o.ng trnh sau: y0− y = x√y.
D- ^ay la phu.o.ng trnh vi ph^an tuy^en tnh c^ap 1
Nghi^e.m t^o'ng quat la y = (C + x
HD gia’i: D- ^ay la phu.o.ng trnh Bernoulli va co nghi^e.m la
√
y = 1
2ln x + Cx
2
63) a) Tm mi^en ma trong do nghi^e.m cu'a bai toan Cauchy cu'a phu.o.ng trnh sau
d^ay t^on ta.i va duy nh^at y0 = y + 3x.
b) Tm nghi^e.m cu'a bai toan Cauchy sau d^ay
D- ^ay la phu.o.ng trnh vi ph^an tuy^en tnh c^ap 1
Nghi^e.m t^o'ng quat la:
y = (C + x) cos x.
Trang 1565) Tm nghi^e.m cu'a phu.o.ng trnh sau: y0+ y
66) Gia'i phu.o.ng trnh: (x + 1)y” + x(y0) 2 = y0
HD gia’i: D- a.t y0 = p, phu.o.ng trnh tro.' thanh phu.o.ng trnh Bernouili (vo.i x 6= −1)
NTQ cu'a phu.o.ng trnh thu^an nh^at: z = Cx
bi^en thi^en hang s^o C: C(x) = ε − 1
Trang 16HD gia’i: D- a.t y0 = p(y); y00 = p.p0y thay vao phu.o.ng trnh
= x + C2.
do y(0) = −1
2 ⇒ C 2 = 0.
V^a.y nghi^e.m ri^eng c^an tm thoa' : ln
... trnh: (x + sin y)dx + (x cos y + sin y)dy = 0
HD gia’i: PTVPTP co tch ph^an t^o''ng quat: x + 2(x sin y − cos y) = C
Trang