KIỂM TRA CHƯƠNG I I/ Mục tiêu: 1. Kiến thức: - Nắm được khái niệm khối đa diện, phân chia khối đa diện - Biết được công thức tính thể tích khối đa diện. 2. Kỷ năng: - Tính được thể tích các khối đa diện một cách nhuần nhuyển. II/ Chuẩn bị của giáo viên và học sinh: - Giáo viên: Đề kiểm tra + Đáp án. - Học sinh: Ôn tập kỹ, chuẩn bị đầy các đồ dùng học tập phục vụ cho bài kiểm tra. ĐỀ Cho hình chóp tứ giác đếu S.ABCD cạnh đáy có độ dài là a, cạnh bên có độ dài là b. Gọi M là trung điểm của SB. a. Dựng thiết diện tạo bởi mp(MAD) với hình chóp S.ABCD với giả sử thiết diện cắt SC tại N. Thiết diện là hình gì? b. Thiết diện chia hình chóp thành 2 khối đa diện nào. c. Tính thể tích hình chóp S.ABCD. d. CMR . . 1 2 S AMD S ABD V V từ đó suy ra . S AMD V ĐÁP ÁN: Hình vẽ: 0.5 Điểm a.Dựng thiết diện tạo bởi mp(MAD) với hình chóp với giả sử thiết diện cắt SC tại N. Thiết diện là hình gì? (2.5 điểm). //( ) ( ) ( ) // AD SBC AMD SBC MN AD Vậy thiết diện cần tìm là hình thang cân AMND. b. Thiết diện chia hình chóp thành 2 khối đa diện nào.(1 điểm). - S.AMND và ABCDNM. c. Tính thể tích hình chóp S.ABCD. (3 điểm). 2 2 2 2 2 . 2 2 2 1 1 . ( ) 3 3 2 S ABCD ABCD a a BH SH b a V S SH a b dvtt d.CMR . . 1 2 S AMD S ABD V V từ đó suy ra . S AMD V . (3 điểm). Ta có: ( ) AH SB AH SBD AH SH Vậy AH là đường cao chung của 2 hình chóp A.SMD và A. SBD. Nên ta có: . . . . 1 . 1 3 1 2 . 3 SMD S AMD A SMD SMD S ABD A SBD SBD SBD S AH V V S SM V V S SB S AH 2 2 2 . . . . . 1 1 1 1 ( ) 2 4 12 2 2 S AMD S ABD S ABCD S ABD S ABCD a V V V a b dvtt DoV V . kh i đa diện một cách nhuần nhuyển. II/ Chuẩn bị của giáo viên và học sinh: - Giáo viên: Đề kiểm tra + Đáp án. - Học sinh: Ôn tập kỹ, chuẩn bị đầy các đồ dùng học tập phục vụ cho b i kiểm tra. . KIỂM TRA CHƯƠNG I I/ Mục tiêu: 1. Kiến thức: - Nắm được kh i niệm kh i đa diện, phân chia kh i đa diện - Biết được công thức tính thể tích kh i đa diện. 2. Kỷ năng: - Tính được. v : 0.5 i m a.Dựng thiết diện tạo b i mp(MAD) v i hình chóp v i giả sử thiết diện cắt SC t i N. Thiết diện là hình gì? (2.5 i m). //( ) ( ) ( ) // AD SBC AMD SBC MN AD Vậy thiết diện