Advanced Mathematical Methods for Scientists and Engineers Episode 6 Part 5 pdf

40 281 0
Advanced Mathematical Methods for Scientists and Engineers Episode 6 Part 5 pdf

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Thus the solution of the integral equation is φ(x) = x − λ λ 2 + 5λ + 60  5(λ − 24) 6 x 2 + λ + 60 4  . 2. For x < 1 the integral equation reduces to φ(x) = x. For x ≥ 1 the integral equation becomes, φ(x) = x + λ  1 0 sin(xy)φ(y) dy. We could solve this problem by writing down the Neumann series. Instead we will use an eigenfunction expansion. Let {λ n } and {φ n } be the eigenvalues and orthonormal eigenfunctions of φ(x) = λ  1 0 sin(xy)φ(y) dy. We expand φ(x) and x in terms of the eigenfunctions. φ(x) = ∞  n=1 a n φ n (x) x = ∞  n=1 b n φ n (x), b n = x, φ n (x) We determine the coefficients a n by substituting the series expansions into the Fredholm equation and equating 2134 coefficients of the eigenfunctions. φ(x) = x + λ  1 0 sin(xy)φ(y) dy ∞  n=1 a n φ n (x) = ∞  n=1 b n φ n (x) + λ  1 0 sin(xy) ∞  n=1 a n φ n (y) dy ∞  n=1 a n φ n (x) = ∞  n=1 b n φ n (x) + λ ∞  n=1 a n 1 λ n φ n (x) a n  1 − λ λ n  = b n If λ is not an eigenvalue then we can solve for the a n to obtain the unique solution. a n = b n 1 − λ/λ n = λ n b n λ n − λ = b n + λb n λ n − λ φ(x) = x + ∞  n=1 λb n λ n − λ φ n (x), for x ≥ 1. If λ = λ m , and x, φ m  = 0 then there is the one parameter family of solutions, φ(x) = x + cφ m (x) + ∞  n=1 n=m λb n λ n − λ φ n (x), for x ≥ 1. If λ = λ m , and x, φ m  = 0 then there is no solution. Solution 48.24 1. Kx = L 1 L 2 x = λx 2135 L 1 L 2 (L 1 x) = L 1 (L 1 l 2 − I)x = L 1 (λx − x) = (λ − 1)(L 1 x) L 1 L 2 (L 2 x) = (L 2 L 1 + I)L 2 x = L 2 λx + L 2 x = (λ + 1)(L 2 x) 2. L 1 L 2 − L 2 L 1 =  d dt + t 2  − d dt + t 2  −  − d dt + t 2  d dt + t 2  = − d dt + t 2 d dt + 1 2 I − t 2 d dt + t 2 4 I −  − d dt − t 2 d dt − 1 2 I + t 2 d dt + t 2 4 I  = I L 1 L 2 = − d dt + 1 2 I + t 2 4 I = K + 1 2 I We note that e −t 2 /4 is an eigenfunction corresponding to the eigenvalue λ = 1/2. Since L 1 e −t 2 /4 = 0 the result of this problem does not produce any negative eigenvalues. However, L n 2 e −t 2 /4 is the product of e −t 2 /4 and a polynomial of degree n in t. Since this function is square integrable it is and eigenfunction. Thus we have the eigenvalues and eigenfunctions, λ n = n − 1 2 , φ n =  t 2 − d dt  n−1 e −t 2 /4 , for n ∈ N. Solution 48.25 Since λ 1 is in the residual spectrum of T , there exists a nonzero y such that (T − λ 1 I)x, y = 0 2136 for all x. Now we apply the definition of the adjoint. x, (T − λ 1 I) ∗ y = 0, ∀x x, (T ∗ − λ 1 I)y = 0, ∀x (T ∗ − λ 1 I)y = 0 y is an eigenfunction of T ∗ corresponding to the eigenvalue λ 1 . Solution 48.26 1. u  (t) +  1 0 sin(k(s − t))u(s) ds = f(t), u(0) = u  (0) = 0 u  (t) + cos(kt)  1 0 sin(ks)u(s) ds − sin(kt)  1 0 cos(ks)u(s) ds = f(t) u  (t) + c 1 cos(kt) − c 2 sin(kt) = f(t) u  (t) = f(t) −c 1 cos(kt) + c 2 sin(kt) The solution of u  (t) = g(t), u(0) = u  (0) = 0 using Green functions is u(t) =  t 0 (t − τ)g(τ) dτ. Thus the solution of our problem has the form, u(t) =  t 0 (t − τ)f(τ) dτ −c 1  t 0 (t − τ) cos(kτ) dτ + c 2  t 0 (t − τ) sin(kτ) dτ u(t) =  t 0 (t − τ)f(τ) dτ −c 1 1 − cos(kt) k 2 + c 2 kt − sin(kt) k 2 2137 We could determine the constants by multiplying in turn by cos(kt) and sin(kt) and integrating from 0 to 1. This would yields a set of two linear equations for c 1 and c 2 . 2. u(x) = λ  π 0 ∞  n=1 sin nx sin ns n u(s) ds We expand u(x) in a sine series. ∞  n=1 a n sin nx = λ  π 0  ∞  n=1 sin nx sin ns n  ∞  m=1 a m sin ms  ds ∞  n=1 a n sin nx = λ ∞  n=1 sin nx n ∞  m=1  π 0 a m sin ns sin ms ds ∞  n=1 a n sin nx = λ ∞  n=1 sin nx n ∞  m=1 π 2 a m δ mn ∞  n=1 a n sin nx = π 2 λ ∞  n=1 a n sin nx n The eigenvalues and eigenfunctions are λ n = 2n π , u n = sin nx, n ∈ N. 3. φ(θ) = λ  2π 0 1 2π 1 − r 2 1 − 2r cos(θ −t) + r 2 φ(t) dt, |r| < 1 We use Poisson’s formula. φ(θ) = λu(r, θ), 2138 where u(r, θ) is harmonic in the unit disk and satisfies, u(1, θ) = φ(θ). For a solution we need λ = 1 and that u(r, θ) is independent of r. In this case u(θ) satisfies u  (θ) = 0, u(θ) = φ(θ). The solution is φ(θ) = c 1 + c 2 θ. There is only one eigenvalue and correspondi ng eigenfunc tion, λ = 1, φ = c 1 + c 2 θ. 4. φ(x) = λ  π −π cos n (x − ξ)φ(ξ) dξ We expand the kernel in a Fourier series. We could find the expansion by integrating to find the Fourier coefficients, but it is easier to expand cos n (x) directly. cos n (x) =  1 2 ( e ıx + e −ıx )  n = 1 2 n  n 0  e ınx +  n 1  e ı(n−2)x + ··· +  n n − 1  e −ı(n−2)x +  n n  e −ınx  2139 If n is odd, cos n (x) = 1 2 n   n 0  ( e ınx + e −ınx ) +  n 1  ( e ı(n−2)x + e −ı(n−2)x ) + ··· +  n (n − 1)/2  ( e ıx + e −ıx )  = 1 2 n  n 0  2 cos(nx) +  n 1  2 cos((n − 2)x) + ··· +  n (n − 1)/2  2 cos(x)  = 1 2 n−1 (n−1)/2  m=0  n m  cos((n − 2m)x) = 1 2 n−1 n  k=1 odd k  n (n − k)/2  cos(kx). 2140 If n is even, cos n (x) = 1 2 n   n 0  ( e ınx + e −ınx ) +  n 1  ( e ı(n−2)x + e −ı(n−2)x ) + ··· +  n n/2 − 1  ( e i2x + e −i2x ) +  n n/2   = 1 2 n  n 0  2 cos(nx) +  n 1  2 cos((n − 2)x) + ··· +  n n/2 − 1  2 cos(2x) +  n n/2  = 1 2 n  n n/2  + 1 2 n−1 (n−2)/2  m=0  n m  cos((n − 2m)x) = 1 2 n  n n/2  + 1 2 n−1 n  k=2 even k  n (n − k)/2  cos(kx). We will denote, cos n (x − ξ) = a 0 2 n  k=1 a k cos(k(x − ξ)), where a k = 1 + (−1) n−k 2 1 2 n−1  n (n − k)/2  . We substitute this into the integral equation. φ(x) = λ  π −π  a 0 2 n  k=1 a k cos(k(x − ξ))  φ(ξ) dξ φ(x) = λ a 0 2  π −π φ(ξ) dξ + λ n  k=1 a k  cos(kx)  π −π cos(kξ)φ(ξ) dξ + sin(kx)  π −π sin(kξ)φ(ξ) dξ  2141 For even n, su bstituting φ(x) = 1 yields λ = 1 πa 0 . For n and m both even or odd, sub stituting φ(x) = cos(mx) or φ(x) = sin(mx) yields λ = 1 πa m . For even n we have the eigenvalues and eigenvectors, λ 0 = 1 πa 0 , φ 0 = 1, λ m = 1 πa 2m , φ (1) m = cos(2mx), φ (2) m = sin(2mx), m = 1, 2, . . . , n/2. For odd n we have the eigenvalues and eigenvectors, λ m = 1 πa 2m−1 , φ (1) m = cos((2m − 1)x), φ (2) m = sin((2m − 1)x), m = 1, 2, . . . , (n + 1)/2. Solution 48.27 1. First we shift the range of integration to rewrite the kernel. φ(x) = λ  2π 0  2π 2 − 6π|x − s| + 3(x − s) 2  φ(s) ds φ(x) = λ  −x+2π −x  2π 2 − 6π|y| + 3y 2  φ(x + y) dy We expand the kernel in a Fourier series. K(y) = 2π 2 − 6π|y| + 3y 2 = ∞  n=−∞ c n e ıny c n = 1 2π  −x+2π −x K(y) e −ıny dy =  6 n 2 , n = 0, 0, n = 0 K(y) = ∞  n=−∞ n=0 6 n 2 e ıny = ∞  n=1 12 n 2 cos(ny) 2142 [...]... differential equation is φ(x) =  a + bx   √ for λ = 0 √ a cos λx + b sin λx   a cosh √−λx + b sinh √−λx for λ > 0 for λ < 0 We see that for λ = 0 and λ < 0 only the trivial solution satisfies the homogeneous boundary conditions For positive λ the left boundary condition demands that a = 0 The right boundary condition is then √ √ b λ cos λ =0 The eigenvalues and eigenfunctions are λn = (2n − 1)π 2 2... The first few are λ1 λ2 λ3 λ4 5 ≈ 0 .67 8298 ≈ 7.27931 ≈ 24.9302 ≈ 54 . 259 3 ≈ 95. 3 057 The eigenfunctions are, φn (x) = v (1; λn )u(x; λn ) − u (1; λn )v(x; λn ) Solution 48.32 1 First note that sin(kx) sin(lx) = sign(kl) sin(ax) sin(bx) where a = max(|k|, |l|), b = min(|k|, |l|) Consider the analytic function, eı(a−b)x − eı(a+b) = sin(ax) sin(bx) − ı cos(ax) sin(bx) 2 2 151 ∞ − −∞ ∞ sin(kx) sin(lx) sin(ax)... −1 1 − x2 Here k is an arbitrary constant and g(x) is an arbitrary odd function Solution 48.37 We define 1 1 f (t) − dt ı2π 0 t − z The Plemelj formulas and the integral equation give us, F (z) = F + (x) − F − (x) = f (x) F + (x) + F − (x) = λf (x) We solve for F + and F − F + (x) = (λ + 1)f (x) F − (x) = (λ − 1)f (x) By writing F + (x) λ+1 = − (x) F λ−1 2 159 we seek to determine F to within a multiplicative... Plemelj formulas 1 1 γ/2 f (t) − e − e−γ/2 dt = eγ/2 + e−γ/2 f (x) ıπ 0 t−x 1 f (t) γ 1 − dt = tanh f (x) ıπ 0 t − x 2 Thus we see that the eigenfunctions are φ(x) = 1 x(1 − x) 1−x x −ı tanh−1 (λ)/π for −1 < λ < 1 The method used in this problem cannot be used to construct eigenfunctions for λ > 1 For this case we cannot find an F (z) that has integrable algebraic singularities and vanishes at infinity 2 161 ... will give us the factors (z − 1)k and z m in the solution for F (z) We will choose the integers k and m so that F (z) has only algebraic singularities and vanishes at infinity We drop the ı2πn term for now log F (z) = log F (z) = 1 z + log π π 1 ı2π 1−z −z 2 162 1 0 ı2t dt t−z F (z) = e1/π z−1 z z/π We replace e1/π by a multiplicative constant and multiply by (z − 1)1 to give F (z) the desired properties... evaluate the integral and obtain a differential equation for f (x) f (t) dt = 1 C t−x f (x) + ıλπf (x) = 1 f (x) + λ − f (x) = 1 + c e−ıλπx ıλπ Consider the equation, f (z) + λ C f (t) dt = g(z) t−z 2 163 Since the integral and g(z) are analytic functions inside C we know that f (z) is analytic inside C We use Cauchy’s theorem to evaluate the integral and obtain a differential equation for f (x) f (t) dt... t 1 P (t − x) dt g(τ ) dτ − − ıπ C τ − t P (t − x) − C C P (τ − x)g(τ ) dτ C 1 g(t) 1 − dt − 2 2 π C t−x π Solution 48.41 Solution 48.42 2 1 65 P (t − x)g(t) dt C Part VII Nonlinear Differential Equations 2 166 Chapter 49 Nonlinear Ordinary Differential Equations 2 167 49.1 Exercises Exercise 49.1 A model set of equations to describe an epidemic, in which x(t) is the number infected, y(t) is the number susceptible,... 2 155 Solution 48. 35 (i) τ −β τ −α ζ −β G+ (ζ) = (ζ − β)−1 ζ −α G− (ζ) = e−ı2πγ G+ (ζ) γ G(τ ) = (τ − β)−1 γ γ ζ −β ζ −α γ ζ −β + − e−ı2πγ )(ζ − β)−1 G (ζ) + G (ζ) = (1 + ζ −α −ı2πγ 1 (1 − e ) dτ G+ (ζ) + G− (ζ) = − 1−γ (τ − α)γ (τ − ζ) ıπ C (τ − β) G+ (ζ) − G− (ζ) = (1 − e−ı2πγ )(ζ − β)−1 1 dτ (ζ − β)γ−1 − = −ı cot(πγ) ıπ C (τ − β)1−γ (τ − α)γ (τ − ζ) (ζ − α)γ (ii) Consider the branch of z−β z−α 21 56 . .. We expand φ in these eigenfunctions p(T )φ = µφ p(T ) cn φn = µ cn p(λn )φn = cn φn cn µφn ∀n such that cn = 0 p(λn ) = µ, Thus all eigenvalues of p(T ) are of the form p(λ) with λ an eigenvalue of T Solution 48.29 The Fourier cosine transform is defined, 1 ˆ f (ω) = π ∞ f (x) cos(ωx) dx, 0 ∞ ˆ f (ω) cos(ωx) dω f (x) = 2 0 We can write the integral equation in terms of the Fourier cosine transform ∞... Plemelj formula are, F + (x) − F − (x) = f (x) F + (x) + F − (x) = − We solve for F + and F − F ± (x) = From this we see 1 2 ±1 − ı f (x) tan(x) ı tan(x) f (x) F + (x) 1 − ı/ tan(x) = = eı2x − (x) F −1 − ı/ tan(x) We seek to determine F (z) up to a multiplicative constant Taking the logarithm of this equation yields log F + (x) − log F − (x) = ı2x + ı2πn The ı2πn term will give us the factors (z − 1)k and . of the integral equation is φ(x) = x − λ λ 2 + 5 + 60  5( λ − 24) 6 x 2 + λ + 60 4  . 2. For x < 1 the integral equation reduces to φ(x) = x. For x ≥ 1 the integral equation becomes, φ(x). boundary condition, φ(0) − φ  (0) = 0. The first few are λ 1 ≈ 0 .67 8298 λ 2 ≈ 7.27931 λ 3 ≈ 24.9302 λ 4 ≈ 54 . 259 3 λ 5 ≈ 95. 3 057 The eigenfunctions are, φ n (x) = v  (1; λ n )u(x; λ n ) − u  (1;. dξ  2141 For even n, su bstituting φ(x) = 1 yields λ = 1 πa 0 . For n and m both even or odd, sub stituting φ(x) = cos(mx) or φ(x) = sin(mx) yields λ = 1 πa m . For even n we have the eigenvalues and

Ngày đăng: 06/08/2014, 01:21

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan