1. Trang chủ
  2. » Ngoại Ngữ

PARTICLE-LADEN FLOW - ERCOFTAC SERIES Phần 1 pps

41 247 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 41
Dung lượng 655,09 KB

Nội dung

[...]... ‘on-shore’, maximum ‘offshore’ and total mean flux profiles for two grain sizes, i.e., 0.28 (MA5 010 ) and 0 .15 mm (FA5 010 ) FA5 010 FA5 010 FA5 010 30 30 25 25 25 20 20 20 15 15 15 10 10 10 5 5 5 0 z (mm) 30 0 0 −5 −200 10 0 0 10 0 200 −5 −200 10 0 MA5 010 0 10 0 200 −5 −50 MA5 010 0 25 50 MA5 010 30 30 30 25 25 25 20 20 20 15 15 15 10 10 10 5 5 5 0 z (mm) −25 0 0 −5 −200 10 0 0 10 0 200 sand flux (mm/s) −5 −200 10 0... valid for very large Re (Quinn, 2006) Sediment Transport, Ripple Dynamics and Object Burial 17 Table 1 Typical values of parameters Laboratory Ocean U (cm s 1 ) T (s) D (cm) d (cm) KC θ Re 1 0-4 6 2. 5-5 3-8 0.0 4-0 .06 6-6 0 0. 01 5-0 .3 ( 4-3 5 )10 3 2 0 -1 00 4 -1 0 50 0.0 2-0 .1 1. 6 -1 6 0.0 1- 0 .8 ( 1- 5 )10 5 2 Experimental set-up and flow conditions A detailed description of the experimental facility is given in (Testik,... Coastal Eng Vol 48, pp 17 1- 1 88 [7] McLean, S.R., J.S Ribberink, C.M Dohmen-Janssen and W.N.M Hassan (20 01) : Sediment transport measurements within the sheet flow layer 14 [8] [9] [10 ] [11 ] [12 ] [13 ] [14 ] [15 ] [16 ] [17 ] [18 ] [19 ] Jan S Ribberink, Jebbe J van der Werf and Tom O’Donoghue under waves and currents J Waterway, Port, Coast and Ocean Eng., ISSN 073 3-9 50X Nielsen, P (19 92): Coastal bottom boundary... oscillatory flow Appl Ocean Res 21( 5):24 9-2 61 [19 ] Voropayev SI, Roney J, Fernando HJS, Boyer DL, Houston WN (19 98) The motion of large bottom particles (cobble) in a wave induced oscillatory flow Coastal Eng 34( 3-4 ) :19 7-2 19 [20] Voropayev SI, Testik FY, Fernando HJS, Boyer DL (2003a) Burial and scour around short cylinder under progressive shoaling waves Ocean Eng 30 (13 ) :16 4 7 -1 667 [ 21] Voropayev SI, Testik... were developed for the two bed-form regimes References [1] Bailard, J.A (19 81) : An energetics total load sediment transport model for a plane sloping beach J Geoph Research, Vol 86, No C 11, pp 10 93 8 -1 0954 [2] Clubb, G.S (20 01) : Experimental study of vortex ripples in full-scale sinusoidal and asymmetric flows, PhD thesis, University of Aberdeen, Scotland [3] Dohmen-Janssen (19 99): Grain size influence on... 2000) Fig 1 Schematic of the experimental setup: 1 - tank, 2 - water, 3 - vertical wavepaddle, 4 - sloping bottom, 5 - bottom object, 6 - acoustic Doppler velocimeter (ADV), 7 - structured light device (SLD), 8 - photo/video camera, 9 - hydraulic system Section numbers are also shown and the length of each section is 61 cm Although the wave paddle forcing is sinusoidal, with frequency ω and peakto-peak... tan( 1 − β) + sin β], 1 C1 (1 − x∗ ) tan(θ2 + β), 0 ≤ x∗ ≤ C1 / tan 1 , C1 / tan 1 < x∗ ≤ 1 (7) where z ∗ = z/h0 , x∗ = x/Λ0 , C1 ≈ 0.22 - averaged ripple steepness and 1 and θ2 are “universal” on-shore 1 ( ≈ 34o ) and offshore θ2 ( ≈ 18 o ) ripple slope angles It is interesting that when the slope of the tank bottom is subtracted from 1 , the on-shore ripple angle becomes equal to the “avalanche” (repose)... and Al-Salem, 19 95; Uittenbogaard and Klopman, 20 01; Malarkey et al., 2003) In general the flow is driven by the Sheet flow and vortex ripples 9 ∞ u (cm/s) Mr5b63 70 35 0 −35 −70 C B D A E F 0 0 .1 0.2 0.3 0.4 2 0.5 t/T 0.6 z/η 1 1 0 0 1 −0.5 −0.25 0 0.25 0.5 2 1 −0.5 −0.25 0 0.25 0.5 −0.25 0 0.25 0.5 −0.25 0 0.25 0.5 −0.25 0 x/λ 0.25 0.5 2 C D 1 z/η 0.9 B 1 1 0 0 1 −0.5 −0.25 0 0.25 0.5 2 1 −0.5... Houston WN (19 98) Motion of cobbles in the swash zone on an impermeable slope Coastal Eng 33:4 1- 6 0 [7] Nielsen P (19 92) Coastal Bottom Boundary Layers and Sediment Transport World Scientific, Singapore [8] Scherer MA, Melo F, Marder M (19 99) Sand ripples in an oscillating annular sand-water cell, Phys Fluids 11 (1) :5 8-6 7 [9] Sleath JFA (19 84) Sea Bed Mechanics John Wiley and Sons, New York [10 ] Sumer BM,... modeling with heterogeneous (e.g., bi-modal, as a first step) sediments is required Acknowledgment This research was supported by the Office of Naval Research References [1] Andersen KH (20 01) A particle model of rolling grain ripples under waves Phys Fluids 13 (1) :5 8-6 4 [2] Blondeaux P (19 90) Sand ripples under sea waves Part 1 Ripple formation J Fluid Mech 218 : 1- 1 7 [3] Bower GR, Richardson MD, Briggs . 200 −5 0 5 10 15 20 25 30 FA5 010 −50 −25 0 25 50 −5 0 5 10 15 20 25 30 FA5 010 −200 10 0 0 10 0 200 −5 0 5 10 15 20 25 30 MA5 010 z (mm) sand flux (mm/s) −200 10 0 0 10 0 200 −5 0 5 10 15 20 25 30 MA5 010 sand. Congress. ISBN 97 8 -1 -4 02 0-6 21 7-9 (HB) ISBN 97 8 -1 -4 02 0-6 21 8-6 (e-book) Published by Springer, P.O. Box 17 , 3300 AA Dordrecht, The Netherlands. www.springer.com Printed on acid-free paper All Rights. ‘on-shore’, maximum ‘offshore’ and total mean flux profiles for two grain sizes, i.e., 0.28 (MA5 010 ) and 0 .15 mm (FA5 010 ). −200 10 0 0 10 0 200 −5 0 5 10 15 20 25 30 FA5 010 z (mm) −200 10 0 0 10 0

Ngày đăng: 05/08/2014, 14:20

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[1] Andersen KH (2001) A particle model of rolling grain ripples under waves. Phys Fluids 13(1):58-64 Khác
[2] Blondeaux P (1990) Sand ripples under sea waves. Part 1. Ripple form- ation. J Fluid Mech 218:1-17 Khác
[3] Bower GR, Richardson MD, Briggs KB, Elmore PA, Braithwaite EF, Bradley J, Griffin S, Wever TF, Luhder R (2006) Measured and predicted burial of cylinders during the Indian Rocks Beach experiment, January - March 2003. IEEE J Oceanic Eng:in press Khác
[4] Bower GR, Richardson MD, Briggs KB, Vaughan WC, Kennedy CS, Braithwaite EF, Wever T, Luhder R (2004) Indian rocks beach experi- ment, January-March 2003. Naval Research Laboratory, Memorandum Khác
[5] Faraci C, Foti E, Baglio S (2000) Measurements of sandy bed scour processes in an oscillating flow by using structured light. Measurements 28:159-174 Khác
[7] Nielsen P (1992) Coastal Bottom Boundary Layers and Sediment Trans- port. World Scientific, Singapore Khác
[8] Scherer MA, Melo F, Marder M (1999) Sand ripples in an oscillating annular sand-water cell, Phys Fluids 11(1):58-67 Khác
[10] Sumer BM, Fredsoe J (2002) The Mechanics of Scour in the Marine Environment. World Scientific, Singapore Khác
[11] Testik FY (2003) Experimental and Theoretical Modelling of Sand- Water-Object Interaction Under Nonlinear Progressive Waves. Ph.D.Dissertation, Arizona State University, Tempe, AZ, USA Khác
[12] Testik FY, Voropayev SI, Fernando HJS (2005a) Adjustment of sand ripples under changing water waves. Phys Fluids 17(7):072104 Khác
[13] Testik FY, Voropayev SI, Fernando HJS (2005b) Flow around a short ho- rizontal bottom cylinder under steady and oscillatory flows. Phys Fluids 17(4):047103 Khác
[14] Testik FY, Voropayev SI, Balasubramanian S, Fernando HJS (2006a) Self-similarity of asymmetric sand ripple profiles formed under nonlinear shoaling waves. Phys Fluids 18(10):027610 Khác
[15] Testik FY, Voropayev SI, Fernando HJS, Balasubramanian S (2006b) Mines burial in the shoaling zone: scaling of laboratory results to oceanic situation. IEEE J Oceanic Eng: in press Khác
[16] Vittory G, Blondeaux P (1990) Sand ripples under sea waves. Part 2.Finite-amplitude development. J Fluid Mech 218:19-39 Khác
[17] Voropayev SI, Cense A, McEachern GB, Boyer DL, Fernando HJS (2001) Dynamics of cobbles in the shoaling region of a surf zone. Ocean Eng 28(7):763-788 Khác
[18] Voropayev SI, McEachern GB, Boyer DL, Fernando HJS (1999) Dynam- ics of sand ripples and burial/scouring of cobbles in oscillatory flow. Appl Ocean Res 21(5):249-261 Khác
[19] Voropayev SI, Roney J, Fernando HJS, Boyer DL, Houston WN (1998) The motion of large bottom particles (cobble) in a wave induced oscil- latory flow. Coastal Eng 34(3-4):197-219 Khác
[20] Voropayev SI, Testik FY, Fernando HJS, Boyer DL (2003a) Burial and scour around short cylinder under progressive shoaling waves. Ocean Eng 30(13):1647-1667 Khác
[21] Voropayev SI, Testik FY, Fernando HJS, Boyer DL (2003b) Morpho- dynamics and cobbles behaviour in and near the surf zone. Ocean Eng 30(14):1741-1764 Khác
[22] Quinn R (2006) The role of scour in shipwreck site formation pocesses and the preservation of wreck associated scour signatures in the sedi- mentary record - evidence from seabed and sub-surface data. J. Arch.Science 33:1419-1432 Khác

TỪ KHÓA LIÊN QUAN