[...]... ‘on-shore’, maximum ‘offshore’ and total mean flux profiles for two grain sizes, i.e., 0.28 (MA5 010 ) and 0 .15 mm (FA5 010 ) FA5 010 FA5 010 FA5 010 30 30 25 25 25 20 20 20 15 15 15 10 10 10 5 5 5 0 z (mm) 30 0 0 −5 −200 10 0 0 10 0 200 −5 −200 10 0 MA5 010 0 10 0 200 −5 −50 MA5 010 0 25 50 MA5 010 30 30 30 25 25 25 20 20 20 15 15 15 10 10 10 5 5 5 0 z (mm) −25 0 0 −5 −200 10 0 0 10 0 200 sand flux (mm/s) −5 −200 10 0... valid for very large Re (Quinn, 2006) Sediment Transport, Ripple Dynamics and Object Burial 17 Table 1 Typical values of parameters Laboratory Ocean U (cm s 1 ) T (s) D (cm) d (cm) KC θ Re 1 0-4 6 2. 5-5 3-8 0.0 4-0 .06 6-6 0 0. 01 5-0 .3 ( 4-3 5 )10 3 2 0 -1 00 4 -1 0 50 0.0 2-0 .1 1. 6 -1 6 0.0 1- 0 .8 ( 1- 5 )10 5 2 Experimental set-up and flow conditions A detailed description of the experimental facility is given in (Testik,... Coastal Eng Vol 48, pp 17 1- 1 88 [7] McLean, S.R., J.S Ribberink, C.M Dohmen-Janssen and W.N.M Hassan (20 01) : Sediment transport measurements within the sheet flow layer 14 [8] [9] [10 ] [11 ] [12 ] [13 ] [14 ] [15 ] [16 ] [17 ] [18 ] [19 ] Jan S Ribberink, Jebbe J van der Werf and Tom O’Donoghue under waves and currents J Waterway, Port, Coast and Ocean Eng., ISSN 073 3-9 50X Nielsen, P (19 92): Coastal bottom boundary... oscillatory flow Appl Ocean Res 21( 5):24 9-2 61 [19 ] Voropayev SI, Roney J, Fernando HJS, Boyer DL, Houston WN (19 98) The motion of large bottom particles (cobble) in a wave induced oscillatory flow Coastal Eng 34( 3-4 ) :19 7-2 19 [20] Voropayev SI, Testik FY, Fernando HJS, Boyer DL (2003a) Burial and scour around short cylinder under progressive shoaling waves Ocean Eng 30 (13 ) :16 4 7 -1 667 [ 21] Voropayev SI, Testik... were developed for the two bed-form regimes References [1] Bailard, J.A (19 81) : An energetics total load sediment transport model for a plane sloping beach J Geoph Research, Vol 86, No C 11, pp 10 93 8 -1 0954 [2] Clubb, G.S (20 01) : Experimental study of vortex ripples in full-scale sinusoidal and asymmetric flows, PhD thesis, University of Aberdeen, Scotland [3] Dohmen-Janssen (19 99): Grain size influence on... 2000) Fig 1 Schematic of the experimental setup: 1 - tank, 2 - water, 3 - vertical wavepaddle, 4 - sloping bottom, 5 - bottom object, 6 - acoustic Doppler velocimeter (ADV), 7 - structured light device (SLD), 8 - photo/video camera, 9 - hydraulic system Section numbers are also shown and the length of each section is 61 cm Although the wave paddle forcing is sinusoidal, with frequency ω and peakto-peak... tan( 1 − β) + sin β], 1 C1 (1 − x∗ ) tan(θ2 + β), 0 ≤ x∗ ≤ C1 / tan 1 , C1 / tan 1 < x∗ ≤ 1 (7) where z ∗ = z/h0 , x∗ = x/Λ0 , C1 ≈ 0.22 - averaged ripple steepness and 1 and θ2 are “universal” on-shore 1 ( ≈ 34o ) and offshore θ2 ( ≈ 18 o ) ripple slope angles It is interesting that when the slope of the tank bottom is subtracted from 1 , the on-shore ripple angle becomes equal to the “avalanche” (repose)... and Al-Salem, 19 95; Uittenbogaard and Klopman, 20 01; Malarkey et al., 2003) In general the flow is driven by the Sheet flow and vortex ripples 9 ∞ u (cm/s) Mr5b63 70 35 0 −35 −70 C B D A E F 0 0 .1 0.2 0.3 0.4 2 0.5 t/T 0.6 z/η 1 1 0 0 1 −0.5 −0.25 0 0.25 0.5 2 1 −0.5 −0.25 0 0.25 0.5 −0.25 0 0.25 0.5 −0.25 0 0.25 0.5 −0.25 0 x/λ 0.25 0.5 2 C D 1 z/η 0.9 B 1 1 0 0 1 −0.5 −0.25 0 0.25 0.5 2 1 −0.5... Houston WN (19 98) Motion of cobbles in the swash zone on an impermeable slope Coastal Eng 33:4 1- 6 0 [7] Nielsen P (19 92) Coastal Bottom Boundary Layers and Sediment Transport World Scientific, Singapore [8] Scherer MA, Melo F, Marder M (19 99) Sand ripples in an oscillating annular sand-water cell, Phys Fluids 11 (1) :5 8-6 7 [9] Sleath JFA (19 84) Sea Bed Mechanics John Wiley and Sons, New York [10 ] Sumer BM,... modeling with heterogeneous (e.g., bi-modal, as a first step) sediments is required Acknowledgment This research was supported by the Office of Naval Research References [1] Andersen KH (20 01) A particle model of rolling grain ripples under waves Phys Fluids 13 (1) :5 8-6 4 [2] Blondeaux P (19 90) Sand ripples under sea waves Part 1 Ripple formation J Fluid Mech 218 : 1- 1 7 [3] Bower GR, Richardson MD, Briggs . 200 −5 0 5 10 15 20 25 30 FA5 010 −50 −25 0 25 50 −5 0 5 10 15 20 25 30 FA5 010 −200 10 0 0 10 0 200 −5 0 5 10 15 20 25 30 MA5 010 z (mm) sand flux (mm/s) −200 10 0 0 10 0 200 −5 0 5 10 15 20 25 30 MA5 010 sand. Congress. ISBN 97 8 -1 -4 02 0-6 21 7-9 (HB) ISBN 97 8 -1 -4 02 0-6 21 8-6 (e-book) Published by Springer, P.O. Box 17 , 3300 AA Dordrecht, The Netherlands. www.springer.com Printed on acid-free paper All Rights. ‘on-shore’, maximum ‘offshore’ and total mean flux profiles for two grain sizes, i.e., 0.28 (MA5 010 ) and 0 .15 mm (FA5 010 ). −200 10 0 0 10 0 200 −5 0 5 10 15 20 25 30 FA5 010 z (mm) −200 10 0 0 10 0