1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tổng hợp các đề thi vào lớp 10 các tỉnh năm 2009 - 2010 pptx

39 448 3

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 39
Dung lượng 1,23 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT QUẢNG NAM NĂM HỌC 2009-2010 Môn thi TOÁN ( chung cho tất cả các thí sinh) Thời gian 120 phút (không kể thời gian giao đề) Bài 1 (2.0 điểm ) 1. Tìm x để mỗi biểu thức sau có nghĩa a) x b) 1 1x − 2. Trục căn thức ở mẫu a) 3 2 b) 1 3 1− 3. Giải hệ phương trình : 1 0 3 x x y − =   + =  Bài 2 (3.0 điểm ) Cho hàm số y = x 2 và y = x + 2 a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ Oxy b) Tìm tọa độ các giao điểm A,B của đồ thị hai hàm số trên bằng phép tính c) Tính diện tích tam giác OAB Bài 3 (1.0 điểm ) Cho phương trình x 2 – 2mx + m 2 – m + 3 có hai nghiệm x 1 ; x 2 (với m là tham số ) .Tìm biểu thức x 1 2 + x 2 2 đạt giá trị nhỏ nhất. Bài 4 (4.0 điểm ) Cho đường tròn tâm (O) ,đường kính AC .Vẽ dây BD vuông góc với AC tại K ( K nằm giữa A và O).Lấy điểm E trên cung nhỏ CD ( E không trùng C và D), AE cắt BD tại H. a) Chứng minh rằng tam giác CBD cân và tứ giác CEHK nội tiếp. b) Chứng minh rằng AD 2 = AH . AE. c) Cho BD = 24 cm , BC =20cm .Tính chu vi của hình tròn (O). d) Cho góc BCD bằng α . Trên mặt phẳng bờ BC không chứa điểm A , vẽ tam giác MBC cân tại M .Tính góc MBC theo α để M thuộc đường tròn (O). ======Hết====== 1 ĐỀ CHÍNH THỨC Họ và tên : Số báo danh Hướng dẫn: Bài 1 (2.0 điểm ) 1. Tìm x để mỗi biểu thức sau có nghĩa a) 0x ≥ b) 1 0 1x x− ≠ ⇒ ≠ 2. Trục căn thức ở mẫu a) 3 3. 2 3 2 2 2 2. 2 = = b) ( ) ( ) ( ) 1. 3 1 1 3 1 3 1 3 1 2 3 1 3 1 3 1 + + + = = = − − − + 3. Giải hệ phương trình : 1 0 1 1 3 1 3 2 x x x x y y y − = = =    ⇔ ⇔    + = + = =    Bài 2 (3.0 điểm ) Cho hàm số y = x 2 và y = x + 2 a) Vẽ đồ thị của các hàm số này trên cùng một mặt phẳng tọa độ Oxy Lập bảng : x 0 - 2 x - 2 - 1 0 1 2 y = x + 2 2 0 y = x 2 4 1 0 1 4 b) Tìm toạ độ giao điểm A,B : Gọi tọa độ các giao điểm A( x 1 ; y 1 ) , B( x 2 ; y 2 ) của hàm số y = x 2 có đồ thị (P) và y = x + 2 có đồ thị (d) Viết phương trình hoành độ điểm chung của (P) và (d) x 2 = x + 2  x 2 – x – 2 = 0 ( a = 1 , b = – 1 , c = – 2 ) có a – b + c = 1 – ( – 1 ) – 2 = 0 1 1x⇒ = − ; 2 2 2 1 c x a − = − = − = thay x 1 = -1 ⇒ y 1 = x 2 = (-1) 2 = 1 ; x 2 = 2 ⇒ y 2 = 4 Vậy tọa độ giao điểm là A( - 1 ; 1 ) , B( 2 ; 4 ) c) Tính diện tích tam giác OAB 2 O y x A B K C H Cách 1 : S OAB = S CBH - S OAC = 1 2 (OC.BH - OC.AK)= = 1 2 (8 - 2)= 3đvdt Cách 2 : Ctỏ đường thẳng OA và đường thẳng AB vuông góc OA 2 2 2 2 1 1 2AK OK= + = + = ; BC = 2 2 2 2 4 4 4 2BH CH+ = + = ; AB = BC – AC = BC – OA = 3 2 (ΔOAC cân do AK là đường cao đồng thời trung tuyến ⇒ OA=AC) S OAB = 1 2 OA.AB = 1 .3 2. 2 3 2 = đvdt Hoặc dùng công thức để tính AB = 2 2 ( ) ( ) B A B A x x y y− + − ;OA= 2 2 ( ) ( ) A O A O x x y y− + − Bài 3 (1.0 điểm ).Tìm biểu thức x 1 2 + x 2 2 đạt giá trị nhỏ nhất. Cho phương trình x 2 – 2mx + m 2 – m + 3 ( a = 1 ; b = - 2m => b’ = - m ; c = m 2 - m + 3 ) Δ’ = = m 2 - 1. ( m 2 - m + 3 ) = m 2 - m 2 + m - 3 = m – 3 ,do pt có hai nghiệm x 1 ; x 2 (với m là tham số ) Δ’ ≥ 0 ⇒ m ≥ 3 theo viét ta có: x 1 + x 2 = = 2m x 1 . x 2 = = m 2 - m + 3 x 1 2 + x 2 2 = ( x 1 + x 2 ) 2 – 2x 1 x 2 = (2m) 2 - 2(m 2 - m + 3 )=2(m 2 + m - 3 ) =2(m 2 + 2m 1 2 + 1 4 - 1 4 - 12 4 ) =2[(m + 1 2 ) 2 - 13 4 ]=2(m + 1 2 ) 2 - 13 2 Do điều kiện m ≥ 3 ⇒ m + 1 2 ≥ 3+ 1 2 = 7 2 (m + 1 2 ) 2 ≥ 49 4 ⇒ 2(m + 1 2 ) 2 ≥ 49 2 ⇒ 2(m + 1 2 ) 2 - 13 2 ≥ 49 2 - 13 2 = 18 Vậy GTNN của x 1 2 + x 2 2 là 18 khi m = 3 Bài 4 (4.0 điểm ) a) Chứng minh rằng tam giác CBD cân và tứ giác CEHK nội tiếp. * Tam giác CBD cân AC ⊥ BD tại K ⇒ BK=KD=BD:2(đường kính vuông góc dây cung) ,ΔCBD có đường cao CK vừa là đường trung tuyến nên ΔCBD cân. * Tứ giác CEHK nội tiếp · · 0 AEC HEC 180= = ( góc nội tiếp chắn nửa đường tròn) ; · 0 KHC 180= (gt) · · 0 0 0 HEC HKC 90 90 180+ = + = (tổng hai góc đối) ⇒ tứ giác CEHK nội tiếp b) Chứng minh rằng AD 2 = AH . AE. Xét ΔADH và ΔAED có : 3 ¶ A chung ; AC ⊥ BD tại K ,AC cắt cung BD tại A suy ra A là điểm chính giữa cung BAD , hay cung AB bằng cung AD ⇒ · · ADB AED= (chắn hai cung bằng nhau) .Vậy ΔADH = ΔAED (g-g) ⇒ 2 . AD AE AD AH AE AH AD = ⇒ = c) Cho BD = 24 cm , BC =20cm .Tính chu vi của hình tròn (O). BK=KD=BD:2 = 24:2 = 12 (cm) ( cm câu a ) ; BC =20cm * ΔBKC vuông tại A có : KC = 2 2 2 2 20 12 400 144 256BC BK− = − = − = =16 * · 0 ABC 90= ( góc nội tiếp chắn nửa đường tròn) ΔABC vuông tại K có : BC 2 =KC.AC ⇔ 400 =16.AC ⇒ AC = 25 ⇒ R= 12,5cm C = 2пR = 2п.12,5 = 25п (=25.3,14 = 78.5) (cm) d)Tính góc MBC theo α để M thuộc đường tròn (O). Giải: ΔMBC cân tại M có MB = MC suy ra M cách đều hai đầu đoạn thẳng BC ⇒ M ∈ d là đường trung trực BC ,(OB=OC nên O ∈ d ),vì M ∈ (O) nên giả sử d cắt (O) tại M (M thuộc cung nhỏ BC )và M’(thuộc cung lớn BC ). * Trong trường hợp M thuộc cung nhỏ BC ; M và D nằm khác phía BC hay AC do ΔBCD cân tại C nên · · · 0 0 ) : 2 BDC DBC (180 DCB 2 90= − = − α = Tứ giác MBDC nội tiếp thì · · · · 0 0 0 0 0 0 0 ( ) 2 2 2 BDC BMC 180 BMC 180 BDC 180 90 180 90 90+ ⇒ = − = − − = − + = + α α α = * Trong trường hợp M’ thuộc cung lớn BC ΔMBC cân tại M có MM’ là đường trung trực nên MM’ là phân giác góc BMC ⇒ · · 0 0 ) :2 45 2 4 BMM' BMC (90= + = + α α = ⇒ sđ ¼ 0 BM' ) 2 (90= + α (góc nội tiếp và cung bị chắn) 4 A O B M C E D M’ K H B” D” sđ » · BD BCD 22 == α (góc nội tiếp và cung bị chắn) + Xét » ¼ BD BM '< ⇒ 0 0 0 0 0 3 2 2 2 90 2 90 180 0 60+ ⇔ ⇔ ⇔ < α α α < α − < α < α < suy ra tồn tại hai điểm là M thuộc cung nhỏ BC (đã tính ở trên )và M’ thuộc cung lớn BC . Tứ giác BDM’C nội tiếp thì · · 0 2 BDC BM'C 90= = − α (cùng chắn cung BC nhỏ) + Xét » ¼ BD BM'= ⇒ 0 0 0 0 3 2 2 2 90 2 90 180 60+ ⇔ = ⇔ ⇔ α α α = α− α = α = thì M’≡ D không thỏa mãn điều kiện đề bài nên không có M’ ( chỉ có điểm M tmđk đề bài) + Xét » ¼ BD BM'> ⇒ 0 0 0 0 0 3 2 2 2 90 2 90 180 60 90+ ⇔ > ⇔ ⇔ < α α α > α− α > α ≤ (khi BD qua tâm O và BD ⊥ AC ⇒ · 0 BCD 90= α = ) ⇒ M’ thuộc cung » BD không thỏa mãn điều kiện đề bài nên không có M’ (chỉ có điểm M tmđk đề). 5 SỞ GIÁO DỤC ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT BÌNH ĐỊNH NĂM HỌC 2009 - 2010 Đề chính thức Lời giải vắn tắt mơn thi: Tốn Ngày thi: 02/ 07/ 2009 Bài 1: (2,0 điểm) Giải các phương trình sau 1) 2(x + 1) = 4 – x ⇔ 2x + 2 = 4 - x ⇔ 2x + x = 4 - 2 ⇔ 3x = 2 ⇔ x = 2) x 2 – 3x + 2 = 0. (a = 1 ; b = - 3 ; c = 2) Ta có a + b + c = 1 - 3 + 2 = 0 .Suy ra x 1 = 1 và x 2 = = 2 Bài 2: (2,0 điểm) 1.Ta có a, b là nghiệm của hệ phương trình 5 = -2a + b -4 = a + b    ⇔ -3a = 9 -4 = a + b    ⇔ a = - 3 b = - 1    Vậy a = - 3 và b = - 1 2. Cho hàm số y = (2m – 1)x + m + 2 a) Để hàm số nghịch biến thì 2m – 1 < 0 ⇔ m < . b) Để đồ thị hàm số cắt trục hồnh tại điểm có hồnh độ bằng 2 3 − . Hay đồ thò hàm số đi qua điểm có toạ đôï ( 2 3 − ;0). Ta phải có pt 0 = (2m – 1).(- ) + m + 2 ⇔ m = 8 Bài 3: (2,0 điểm) Qng đường từ Hồi Ân đi Phù Cát dài : 100 - 30 = 70 (km) Gọi x (km/h) là vận tốc xe máy .ĐK : x > 0. Vận tốc ơ tơ là x + 20 (km/h) Thời gian xe máy đi đến Phù Cát : (h) Thời gian ơ tơ đi đến Phù Cát : (h) Vì xe máy đi trước ơ tơ 75 phút = (h) nên ta có phương trình : - = Giải phương trình trên ta được x 1 = - 60 (loại) ; x 2 = 40 (nhận). Vậy vận tốc xe máy là 40(km/h), vận tốc của ơ tơ là 40 + 20 = 60(km/h) 6 Bài 4 : a) Chứng minh ∆ ABD cân Xét ∆ ABD có BC ⊥ DA (Do · ACB = 90 0 : Góc nội tiếp chắn nửa đường tròn (O) ) Mặt khác : CA = CD (gt) . BC vừa là đường cao vừa là trung tuyến nên ∆ ABD cân tại B b)Chứng minh rằng ba điểm D, B, F cùng nằm trên một đường thẳng. Vì · CAE = 90 0 , nên CE là đường kính của (O), hay C, O, E thẳng hàng. Ta có CO là đường trung bình của tam giác ABD Suy ra BD // CO hay BD // CE (1) Tương tự CE là đường trung bình của tam giác ADF Suy ra DF // CE (2) Từ (1) và (2) suy ra D, B, F cùng nằm trên một đường thẳng c)Chứng minh rằng đường tròn đi qua ba điểm A, D, F tiếp xúc với đường tròn (O). Ta chứng minh được BA = BD = BF Do đó đường tròn qua ba điểm A,D,F nhận B làm tâm và AB làm bán kính . Vì OB = AB - OA > 0 Nên đường tròn đi qua ba điểm A, D, F tiếp xúc trong với đường tròn (O) tại A Bài 5: (1,0 điểm) Với mọi m, n là số ngun dương và m > n. Vì S k = ( 2 + 1) k + ( 2 - 1) k Ta có: S m+n = ( 2 + 1) m + n + ( 2 - 1) m + n S m- n = ( 2 + 1) m - n + ( 2 - 1) m - n Suy ra S m+n + S m- n = ( 2 + 1) m + n + ( 2 - 1) m + n + ( 2 + 1) m - n + ( 2 - 1) m – n (1) Mặt khác S m .S n = m m ( 2+ 1) + ( 2- 1)     n n ( 2+ 1) + ( 2- 1)     = ( 2 + 1) m+n + ( 2 - 1) m+n + ( 2 + 1) m . ( 2 - 1) n + ( 2 - 1) m . ( 2 + 1) n (2) Mà ( 2 + 1) m - n + ( 2 - 1) m - n = m n ( 2+ 1) ( 2+ 1) + m n ( 2- 1) ( 2- 1) = m n m n n n ( 2+ 1) .( 2- 1) ( 2- 1) .( 2+ 1) ( 2- 1) .( 2+ 1) + = m n m n n ( 2+ 1) .( 2- 1) ( 2- 1) .( 2+ 1) 1 + = m n m n ( 2+ 1) .( 2- 1) ( 2- 1) .( 2+ 1)+ (3) Từ (1), (2) và (3) Vậy S m+n + S m- n = S m .S n với mọi m, n là số ngun dương và m > n. 7 HƯỚNG DẨN GIẢI ĐỀ THI TUYỂN SINH LỚP 10 THPT TỈNH QUẢNG TRỊ MÔN: TOÁN Ngày thi: 07/07/2009 Câu 1 (2,0 điểm) 1. Rút gọn các biểu thức sau: a) 33343332342712 =+−=+− . b) ( ) .1255152515251 2 −=−+−=−+−=−+− 2. Giải phương trình: x 2 -5x+4=0 Ta có: a=1; b=-5; c=4; a+b+c= 1+(-5)+4=0 Nên phương trình có nghiệm : x=1 và x=4 Hay : S= { } 4;1 . Câu 2 (1,5 điểm) Trong mặt phẳng toạ độ Oxy cho hàm số y=-2x+4 có đồ thị là đường thẳng (d). a) Tìm toạ độ giao điểm của đường thẳng (d) với hai trục toạ đô. - Toạ độ giao điểm của đường thẳng (d) với trục Oy là nghiệm của hệ : . 4 0 42 0    = = ⇔    +−= = y x xy x Vậy toạ độ giao điểm của đường thẳng (d) với trục Oy là A(0 ; 4). - Toạ độ giao điểm của đường thẳng (d) với trục Ox là nghiệm của hệ : . 2 0 42 0    = = ⇔    +−= = x y xy y Vậy toạ độ giao điểm của đường thẳng (d) với trục Ox là B(2 ; 0). b) Tìm trên (d) điểm có hoành độ bằng tung độ. Gọi điểm M(x 0 ; y 0 ) là điểm thuộc (d) và x 0 = y 0  x 0 =-2x 0 +4  x 0 =4/3 => y 0 =4/3. Vậy: M(4/3;4/3). Câu 3 (1,5 điểm). Cho phương trình bậc hai: x 2 -2(m-1)x+2m-3=0. (1) a) Chứng minh rằng phương trình (1) có nghiệm với mọi giá trị của m. x 2 - 2(m-1)x + 2m - 3=0. Có: ∆ ’ = ( ) [ ] )32(1 2 −−−− mm = m 2 -2m+1-2m+3 = m 2 -4m+4 = (m-2) 2 ≥ 0 với mọi m.  Phương trình (1) luôn luôn có nghiệm với mọi giá trị của m. b) Phương trình (1) có hai nghiệm trái dấu khi và chỉ khi a.c < 0 <=> 2m-3 < 0 <=> m < 2 3 . 8 Vậy : với m < 2 3 thì phương trình (1) có hai nghiệm trái dấu. Câu 4 (1,5 điểm) Một mảnh vườn hình chử nhật có diện tích là 720m 2 , nếu tăng chiều dài thêm 6m và giảm chiều rộng đi 4m thì diện tích mảnh vườn không đổi. Tính kích thước của mảnh vườn ? Bài giải : Gọi chiều rộng của mảnh vườn là a (m) ; a > 4. Chiều dài của mảnh vườn là a 720 (m). Vì tăng chiều rộng thêm 6m và giảm chiều dài đi 4m thì diện tích không đổi nên ta có phương trình : (a-4). ( a 720 +6) = 720. ⇔ a 2 -4a-480 = 0    <−= = ⇔ .)0(20 24 loaia a Vậy chiều rộng của mảnh vườn là 24m. chiều dài của mảnh vườn là 30m. Câu 5 (3,5 điểm) Cho điểm A nằm ngoài đường tròn tâm O bán kính R. Từ A kẻ đường thẳng (d) không đi qua tâm O, cắt (O) tại B và C ( B nằm giữa A và C). Các tiếp tuyến với đường tròn (O) tại B và C cắt nhau tại D. Từ D kẻ DH vuông góc với AO (H nằm trên AO), DH cắt cung nhỏ BC tại M. Gọi I là giao điểm của DO và BC. 1. Chứng minh OHDC là tứ giác nội tiếp. 2. Chứng minh OH.OA = OI.OD. 3. Chứng minh AM là tiếp tuyến của đường tròn (O). 4. Cho OA = 2R. Tính theo R diện tích của phần tam giác OAM nằm ngoài đường tròn (O). 9 K I M H D C B O A Chứng minh: a) C/m: OHDC nội tiếp. Ta có: DH vuông goc với AO (gt). => ∠ OHD = 90 0 . CD vuông góc với OC (gt). => ∠ OCD = 90 0 . Xét Tứ giác OHDC có ∠ OHD + ∠ OCD = 180 0 . Suy ra : OHDC nội tiếp được một đường tròn. b) C/m: OH.OA = OI.OD Ta có: OB = OC (=R); DB = DC ( T/c của hai tiếp tuyến cắt nhau) Suy ra OD là đường trung trực của BC => OD vuông góc với BC. Xét hai tam giác vuông ∆ OHD và ∆ OIA có ∠ AOD chung  ∆ OHD đồng dạng với ∆ OIA (g-g)  ODOIOAOH OA OD OI OH ==>= (1) (đpcm). c) Xét ∆ OCD vuông tại C có CI là đường cao áp dụng hệ thức lượng trong tam giác vuông, ta có: OC 2 = OI.OD mà OC = OM (=R) (2). Từ (1) và (2) : OM 2 = OH.OA OM OA OH OM =⇒ . Xét 2 tam giác : ∆ OHM và ∆ OMA có : ∠ AOM chung và OM OA OH OM = . Do đó : ∆ OHM đồng dạng ∆ OMA (c-g-c)  ∠ OMA = ∠ OHM = 90 0 . 10 [...]... p)2 + (n – p)2 = 2 - ( m + n + p )2 ⇔ (m – p)2 + (n – p)2 = 2 – B2 vế trái không âm ⇒ 2 – B2 ≥ 0 ⇒ B2 ≤ 2 ⇔ − 2 ≤ B ≤ 2 dấu bằng ⇔ m = n = p thay vào (1) ta có m = n = p = ± ⇒ Max B = 2 khi m = n = p = Min B = − 2 khi m = n = p = − 2 3 2 3 2 3 14 SỞ GD&ĐT VĨNH PHÚC —————— ĐỀ CHÍNH THỨC KỲ THI VÀO LỚP 10 THPT CHUYÊN NĂM HỌC 200 9- 2 010 ĐỀ THI MÔN: TOÁN Dành cho các thí sinh thi vào lớp chuyên Toán Thời... AOM - SqOKM  Xét ∆ OAM vuông tại M có OM = R ; OA = 2.OK = 2R => ∆ OMK là tam giác đều  3 và ∠ AOM = 600 2 1 1 3 3 => S ∆ AOM = OA.MH = 2 R.R = R2 (đvdt) 2 2 2 2 Π.R 2 60 Π.R 2 = SqOKM = (đvdt) 360 6 3 Π.R 2 3 3 −Π => S = S ∆ AOM - SqOKM = R 2 (đvdt) − = R2 2 6 6 => MH = R 11 SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HÓA KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 200 9- 2 010 Môn thi : Toán Ngày thi: 30 tháng 6 năm. .. nhóm học sinh cần chia đều một lượng kẹo thành các phần quà để tặng cho các em nhỏ ở một đơn vị nuôi trẻ mồ côi Nếu mỗi phần quà giảm 6 viên kẹo thì các em sẽ có thêm 5 phần quà nữa, còn nếu mỗi phần quà giảm 10 viên kẹo thì các em sẽ có thêm 10 phần quà nữa Hỏi nhóm học sinh trên có bao nhiêu viên kẹo? 26 SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG TRỊ ĐỀ THI TUYỂN SINH LỚP 10 THPT Năm học 200 7-2 008 Bài 1 (1,5 điểm)... có (a + b + c) 2 ≥ 3(ab + bc + ca) , thay vào trên có a b c + + ≥ 3 – 9/6 => điều phải chứng minh , dấu đẳng thức xảy ra khi và chỉ 2 2 1 + b 1 + c 1 + a2 khi a = b = c = 1 30 SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG NAM ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 200 9- 2 010 Môn thi TOÁN ( chung cho tất cả các thí sinh) Thời gian 120 phút (không kể thời gian giao đề) Bài 1 (2.0 điểm ) 1 Tìm x để mỗi biểu... MINH KỲ THI TUYỂN SINH LỚP 10 TRUNG HỌC PHỔ THÔNG CHUYÊN NĂM HỌC 2008 -2 009 KHÓA NGÀY 1 8-0 6-2 008 Môn thi: TOÁN Thời gian làm bài: 150 phút (không kể thời gian giao đề) ĐỀ CHÍNH THỨC Câu 1 (4 điểm): a) Tìm m để phương trình x2 + (4m + 1)x + 2(m – 4) = 0 có hai nghiệm x1, x2 thoả |x1 – x2| = 17 2x ≥ m − 1 có một nghiệm duy nhất  mx ≥ 1 b) Tìm m để hệ bất phương trình  Câu 2(4 điểm): Thu gọn các biểu... (*) Theo Vi-et :  x1 + x2 = 2   x1 x2 = m − 3 (1) (2) 2 1 Theo bài: x 2x2 + x1x2 = - 12 => x1(x1 + x2 ) -2 x2 =-1 2 ⇒ 2x1 - 2x2 = -1 2 ) ( Theo (1) ) hay x1 - x2 = -6 Kết hợp (1) ⇒ x1 = -2 ; x2 = 4 Thay vào (2) được : m - 3 = -8 ⇒ m = -5 ( TM (*) ) M O Câu IV a, ∆ NEM đồng dạng ∆ PEN ( g-g) => K NE ME = => NE 2 = ME.PE EP NE H F N P I D 33 E · · b, MNP = MPN ( do tam giác MNP cân tại M ) · · · PNE... b3) ≥ (a + b)3 ⇒ 8 ≥ (a + b)3 ⇒ a + b ≤ 2 (2) Từ (1) và (2) ⇒ 0 < a + b ≤ 2 oOo 25 ĐỀ THI VÀO LỚP 10 PTNK 2008 - 2009 MÔN TOÁN AB (chung cho các lớp Toán, Tin, Lý, Hoá, Sinh) Câu 1 Cho phương trình: x 2 + mx − 2m 2 = ( 2m  − 1) x + 6    (1) x + 2m a)Giải phương trình (1) khi m = -1 b)Tìm tất cả các giá trị của m để phương trình (1) có nghiệm Câu 2 a) Giải phương trình: 2x – 1 – 2 x – 1 =... điểm E (E khác H và G Các tia AE,BE cắt nữa đường tròn (O) lần lượt tại C và D Gọi F là giao điểm hai tia BC và AD Chứng minh rằng: a) Tứ giác ECFD nội tiếp được trong một đường tròn b) Bốn điểm E,H,G,F thẳng hàng c) E là trung điểm GH khi và chỉ G là trung điểm FH 28 SỞ GIÁO DỤC &ĐÀO TẠO TỈNH BÌNH ĐỊNH ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH TRUNG HỌC PHỔ THÔNG NĂM HỌC 200 9- 2 010 Môn thi: TOÁN ( Hệ số 1 –... Chứng minh rằng tất cả những điểm đã cho nằm trong một tam giác có diện tích không lớn hơn 4 —Hết— Cán bộ coi thi không giải thích gì thêm Họ tên thí sinh SBD 15 SỞ GD&ĐT VĨNH PHÚC —————— KỲ THI TUYỂN SINH LỚP 10 THPT CHUYÊN NĂM HỌC 200 9- 2 010 HƯỚNG DẪN CHẤM MÔN: TOÁN Dành cho lớp chuyên Toán ————————— Câu 1 (3,0 điểm) a) 1,75 điểm: Nội dung trình bày Điểm 0,25 Điều kiện xy ≠ 0  2[xy (... ĐÀO TẠO THÀNH PHỐ ĐÀ NẴNG KÌ THI TUYỂN SINH LỚP 10 THPT KHÓA NGÀY 2 3-0 6 -2 009 MÔN THI : TOÁN Thời gian làm bài : 120 phút ( không tính thời gian giao đề ) CÂU1: (2 điểm ) a) Rút gọn biểu thức : A= ( 5 − 2 ) 2 + 40 b) Tìm x biết: Câu 2: (2.5đ) ( x − 2) 2 = 3 3 x + 2 y = 4 2 x − y = 5 a) giải hệ phương trình :  b) Trên mặt phẳng tọa độ Oxy, vẽ đồ thị (d) của hàm số y= -x+2 Tìm tọa độ của những điểm . PHÚC —————— KỲ THI VÀO LỚP 10 THPT CHUYÊN NĂM HỌC 200 9- 2 010 ĐỀ THI MÔN: TOÁN Dành cho các thí sinh thi vào lớp chuyên Toán Thời gian làm bài: 150 phút, không kể thời gian giao đề ————————— (Đề có 01. kiện đề bài nên không có M’ (chỉ có điểm M tmđk đề) . 5 SỞ GIÁO DỤC ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT BÌNH ĐỊNH NĂM HỌC 2009 - 2 010 Đề chính thức Lời giải vắn tắt mơn thi: Tốn Ngày thi: . R R R (đvdt). 11 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 THPT THANH HÓA NĂM HỌC 200 9- 2 010 Môn thi : Toán Ngày thi: 30 tháng 6 năm 2009 Thời gian làm bài: 120 phút Bài 1 (1,5

Ngày đăng: 01/08/2014, 02:22

TỪ KHÓA LIÊN QUAN

w