Trần Sĩ Tùng Trung tâm BDVH & LTĐH THÀNH ĐẠT Đề số 2 ĐỀ THI THỬ ĐẠI HỌC VÀ CAO ĐẲNG NĂM 2010 Môn thi: TOÁN – Khối A–B–D–V Thời gian: 180 phút (không kể thời gian phát đề) I. PHẦN CHUNG (7 điểm) Câu I (2 điểm): Cho hàm số yxxx 32 18 3 33 = + (1) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Lập phương trình đường thẳng d song song với trục hoành và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho tam giác OAB cân tại O (O là gốc toạ độ). Câu II (2 điểm): 1) Giải phương trình: xx 2 1 (14sin)sin3 2 -= 2) Giải phương trình: xxxx 222 31tan1 6 p -+=-++ Câu III (1 điểm): Tính tích phân: I = xxxdx 2 522 2 ()4 - +- ò Câu IV (1 điểm): Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy góc 0 60 . Gọi M là điểm đối xứng với C qua D, N là trung điểm của SC. Mặt phẳng (BMN) chia khối chóp thành hai phần. Tính tỉ số thể tích của hai phần đó. Câu V (1 điểm): Cho x, y, z là các số dương thoả mãn xyz 222 1 ++= . Chứng minh: P = xyz yzzxxy 222222 33 2 ++³ +++ II. PHẦN TỰ CHỌN (3 điểm) 1. Theo chương trình chuẩn Câu VI.a (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): xy 22 (1)(2)9 -++= và đường thẳng d: xym 0 ++= . Tìm m để trên đường thẳng d có duy nhất một điểm A mà từ đó kẻ được hai tiếp tuyến AB, AC tới đường tròn (C) sao cho tam giác ABC vuông (B, C là hai tiếp điểm). 2) Trong không gian với hệ toạ độ Oxyz, viết phương trình mặt phẳng (P) qua O, vuông góc với mặt phẳng (Q): xyz 0 ++= và cách điểm M(1; 2; –1) một khoảng bằng 2 . Câu VII.a (1 điểm): Tìm hệ số của x 8 trong khai triển nhị thức Niu–tơn của ( ) n x 2 2 +, biết: nnn ACC 321 849 -+= (n Î N, n > 3). 2. Theo chương trình nâng cao Câu VI.b (2 điểm): 1) Trong mặt phẳng với hệ toạ độ Oxy, cho đường thẳng d: xy 10 = và hai đường tròn có phương trình: (C 1 ): xy 22 (3)(4)8 -++= , (C 2 ): xy 22 (5)(4)32 ++-= Viết phương trình đường tròn (C) có tâm I thuộc d và tiếp xúc ngoài với (C 1 ) và (C 2 ). 2) Trong không gian với hệ toạ độ Oxyz, cho điểm A(3; –1; 1), đường thẳng D: xyz 2 122 - == và mặt phẳng (P): xyz 50 -+-= . Viết phương trình tham số của đường thẳng d đi qua A, nằm trong (P) và hợp với đường thẳng D một góc 0 45 . Câu VII.b (1 điểm): Giải hệ phương trình: xyxy xyxy 222 2 lglglg() lg()lg.lg0 ì ï =+ í -+= ï î ============================ Trn S Tựng Hng dn: I. PHN CHUNG Cõu I: 2) Gi s phng trỡnh ng thng d: y = m. PT honh giao im ca (C) v d: xxxm 32 18 3 33 += xxxm 32 39830 +-= (1) d ct (C) ti 2 im phõn bit A, B sao cho DOAB cõn ti O thỡ (1) phi cú x 1 , x 1 , x 2 (x 1 , x 1 l honh ca A, B) ị x 1 , x 2 l cỏc nghim ca phng trỡnh: xxxx 22 12 ()()0 = xxxxxxx 3222 2112 0 += (2) ng nht (1) v (2) ta c: x x xxm 2 2 1 2 12 3 9 83 ỡ = ù = ớ ù =- ợ x x m 1 2 3 3 19 3 ỡ = ù ù = ớ ù =- ù ợ . Kt lun: d: y 19 3 =- . Cõu II: 1) Nhn xột: cosx = 0 khụng phi l nghim ca PT. Nhõn 2 v ca PT vi cosx, ta c: PT xxxx 3 2sin3(4cos3cos)cos -= xxx 2sin3.cos3cos = xx sin6sin 2 p ổử =- ỗữ ốứ kk xx 22 147105 pppp =+=+ 2) PT xxxx 242 3 311 3 -+=-++ (1) Chỳ ý: xxxxxx 4222 1(1)(1) ++=++-+ , xxxxxx 222 312(1)(1) -+=-+-++ Do ú: (1) xxxxxxxx 2222 3 2(1)(1)(1)(1) 3 -+-++=-++-+ . Chia 2 v cho ( ) xxxx 2 22 11 ++=++ v t xx tt xx 2 2 1 ,0 1 -+ => ++ Ta c: (1) tt 2 3 210 3 +-= t t 3 0 23 1 3 ộ - =< ờ ờ ờ = ờ ở xx xx 2 2 11 3 1 -+ = ++ x 1 = . Cõu III: I = xxxdx 2 522 2 ()4 - +- ũ = xxdx 2 52 2 4 - - ũ + xxdx 2 22 2 4 - - ũ = A + B. ã Tớnh A = xxdx 2 52 2 4 - - ũ . t tx =- . Tớnh c: A = 0. ã Tớnh B = xxdx 2 22 2 4 - - ũ . t xt 2sin = . Tớnh c: B = 2 p . Cõu IV: Gi P = MN ầ SD, Q = BM ầ AD ị P l trng tõm DSCM, Q l trung im ca MB. ã MDPQ MCNB V MDMPMQ VMCMNMB 1211 2326 === ị DPQCNBMCNB VV 5 6 = ã Vỡ D l trung im ca MC nờn dMCNBdDCNB (,())2(,()) = ị MCNBDCNBDCSBSABCD VVVV . 1 2 2 === ị DPQCNBSABCD VV . 5 12 = ị SABNPQSABCD VV . 7 12 = ị SABNPQ DPQCNB V V 7 5 = . Cõu V: T gi thit xyz 222 1 ++= ị xyz 0,,1 << . ã p dng BT Cụsi cho 3 s dng: xxx 222 2,1.1 ta c: Trần Sĩ Tùng xxx xx 222 222 3 2(1)(1) 2(1) 3 +-+- ³- Û xx 222 3 2 2(1) 3 -£ Û xx 2 2 (1) 33 -£ Û x x x 2 2 33 2 1 ³ - Û x x yz 2 22 33 2 ³ + (1) · Tương tự ta có: y y zx 2 22 33 2 ³ + (2), z z xy 2 22 33 2 ³ + (3) · Từ (1), (2), (3) Þ xyz xyz yzzxxy 222 222222 3333 () 22 ++³++= +++ Dấu "=" xảy ra Û xyz 3 3 === . II. PHẦN TỰ CHỌN 1. Theo chương trình chuẩn Câu VI.a: 1) (C) có tâm I(1; –2), bán kính R = 3. Vì các tiếp tuyến AB, AC vuông góc nên ABIC là hình vuông có cạnh bằng 3 Þ IA = 32 . Giả sử A(x; –x – m) Î d. IA 2 18 = Û xmx 22 (1)(2)18 -+ += Û xmxmm 22 22(3)4130 + = (1) Để chỉ có duy nhất một điểm A thì (1) có 1 nghiệm duy nhất Û D¢ = mm 2 2350 -++= Û m m 7 5 é = ê =- ë . 2) PT mặt phẳng (P) qua O nên có dạng: AxByCz 0 ++= (với ABC 222 0 ++¹ ). · Vì (P) ^ (Q) nên: ABC 1.1.1.0 ++= Û CAB = (1) · dMP (,())2 = Û ABC ABC 222 2 2 +- = ++ Û ABCABC 2222 (2)2() +-=++ (2) Từ (1) và (2) ta được: ABB 2 850 += Û B AB 0(3) 850(4) é = ê += ë · Từ (3): B = 0 Þ C = –A. Chọn A = 1, C = –1 Þ (P): xz 0 -= · Từ (4): 8A + 5B = 0. Chọn A = 5, B = –8 Þ C = 3 Þ (P): xyz 5830 -+= . Câu VII.a: Ta có: nnn ACC 321 849 -+= Û nn nnnn 8(1) (1)(2)49 2 - += Û nnn 32 77490 -+-= Û n 7 = . nkkk k xxCx 7 2272(7) 7 0 (2)(2)2 - = +=+= å . Số hạng chứa x 8 Û k 2(7)8 -= Û k = 3. Þ Hệ số của x 8 là: C 33 7 .2280 =. 2. Theo chương trình nâng cao Câu VI.b: 1) Gọi I, I 1 , I 2 , R, R 1 , R 2 lần lượt là tâm và bán kính của (C), (C 1 ), (C 2 ). Giả sử I(a; a – 1) Î d. (C) tiếp xúc ngoài với (C 1 ), (C 2 ) nên II 1 = R + R 1 , II 2 = R + R 2 Þ II 1 – R 1 = II 2 – R 2 Û aaaa 2222 (3)(3)22(5)(5)42 -++-=-++- Û a = 0 Þ I(0; –1), R = 2 Þ Phương trình (C): xy 22 (1)2 ++= . 2) Gọi dP uun ,, D rrr lần lượt là các VTCP của d, D và VTPT của (P). Giả sử d uabcabc 222 (;;)(0) =++¹ r . · Vì d Ì (P) nên dP un ^ rr Þ abc 0 -+= Û bac =+ (1) · · ( ) d 0 ,45 D = Û abc abc 222 222 2 3 ++ = ++ Û abcabc 2222 2(2)9() ++=++ (2) Từ (1) và (2) ta được: cac 2 14300 += Û c ac 0 1570 é = ê += ë · Với c = 0: chọn a = b = 1 Þ PTTS của d: { xtytz 3;1;1 =+= = · Với 15a + 7c = 0: chọn a = 7, c = –15, b = –8 Þ PTTS của d: { xtytzt 37;18;115 =+= =- . Trần Sĩ Tùng Câu VII.b: Điều kiện: x > y > 0. Hệ PT Û xyxy xyxy 222 2 lglg(lglg) lg()lg.lg0 ì ï =++ í -+= ï î Û yxy xyxy 2 lg(lglg)0 lg()lg.lg0 ì += í -+= î Û y xy 2 lg0 (1) lg()0 ì = í -= î hoặc xy xyxy 2 lglg0 lg()lg.lg0 ì += í -+= î (2) · (1) Û y xy 1 1 ì = í -= î Û x y 2 1 ì = í = î . · (2) Û y x xx xx 2 1 11 lglg.lg0 ì = ï ï í æö ï -+= ç÷ ï èø î Û y x x x x 2 22 1 1 lglg ì = ï ï í æö - ï = ç÷ ï èø î Û y x x 2 1 2 ì = ï í ï = î Û x y 2 1 2 ì = ï í = ï î Kết luận: Hệ có nghiệm: (2; 1) và 1 2; 2 æö ç÷ èø . ===================== . xxxxxx 422 2 1(1)(1) ++=+ +-+ , xxxxxx 22 2 3 12( 1)(1) -+ =-+ -+ + Do ú: (1) xxxxxxxx 22 22 3 2( 1)(1)(1)(1) 3 -+ -+ + =-+ +-+ . Chia 2 v cho ( ) xxxx 2 22 11 ++=++ v t xx tt xx 2 2 1 ,0 1 -+ => ++ . gi thit xyz 22 2 1 ++= ị xyz 0,,1 << . ã p dng BT Cụsi cho 3 s dng: xxx 22 2 2, 1.1 ta c: Trần Sĩ Tùng xxx xx 22 2 22 2 3 2( 1)(1) 2( 1) 3 +-+ - - Û xx 22 2 3 2 2(1) 3 - Û xx 2 2 (1) 33 - . xx 2 2 (1) 33 - Û x x x 2 2 33 2 1 ³ - Û x x yz 2 22 33 2 ³ + (1) · Tương tự ta có: y y zx 2 22 33 2 ³ + (2) , z z xy 2 22 33 2 ³ + (3) · Từ (1), (2) , (3) Þ xyz xyz yzzxxy 22 2 22 222 2 3333 () 22 ++³++= +++