1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG LẦN 1 - TRƯỜNG THPT PHAN CHÂU TRINH pdf

5 426 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 10,98 MB

Nội dung

SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ ĐÀ NẴNG TRƯỜNG THPT PHAN CHÂU TRINH ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2010-LẦN 1 Môn thi: TOÁN – Khối B Thời gian làm bài: 180 phút , không kể thời gian giao đề I. PHẦN CHUNG DÀNH CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I: (2,0 điểm) Cho hàm số 4 2 2 4 2 2 y x m x m m     (1), với m là tham số. 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi 1 m  . 2. Chứng minh đồ thị hàm số (1) luôn cắt trục Ox tại ít nhất hai điểm phân biệt, với mọi 0 m  . Câu II: (2,0 điểm) 1. Giải phương trình 2sin 2 4sin 1 6 x x           . 2. Tìm các giá trị của tham số m sao cho hệ phương trình 2 1 y x m y xy          có nghiệm duy nhất. Câu III: (2,0 điểm) 1. Tìm nguyên hàm của hàm số       2 4 1 2 1 x f x x    . 2. Với mọi số thực dương ; ; x y z thỏa điều kiện 1 x y z    . Tìm giá trị nhỏ nhất của biểu thức: 1 1 1 2P x y z x y z             . Câu IV: (1,0 điểm) Cho khối tứ diện ABCD. Trên các cạnh BC, BD, AC lần lượt lấy các điểm M, N, P sao cho 4 , 2 BC BM BD BN   và 3 AC AP  . Mặt phẳng (MNP) chia khối tứ diện ABCD làm hai phần. Tính tỉ số thể tích giữa hai phần đó. II. PHẦN RIÊNG (3,0 điểm) Tất cả thí sinh chỉ được làm một trong hai phần: A hoặc B. A. Theo chương trình Chuẩn Câu Va: (1,0 điểm) Trong mặt phẳng tọa độ (Oxy), cho đường thẳng   : 2 4 0 d x y    . Lập phương trình đường tròn tiếp xúc với các trục tọa độ và có tâm ở trên đường thẳng (d). Câu VIa: (2,0 điểm) 1. Giải phương trình log log 4 2 2 8 x x x  . 2. Viết phương trình các đường thẳng cắt đồ thị hàm số 1 2 x y x    tại hai điểm phân biệt sao cho hoành độ và tung độ của mỗi điểm là các số nguyên B. Theo chương trình Nâng cao Câu Vb: (1,0 điểm) Trong không gian Oxyz , cho các điểm       1;3;5 , 4;3;2 , 0;2;1 A B C  . Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC. Câu VIb: (2,0 điểm) 1. Giải bất phương trình   2 4 8 2 1 log log log 0 x x x    . 2. Tìm m để đồ thị hàm số   3 2 5 5 y x m x mx     có điểm uốn ở trên đồ thị hàm số 3 y x  . Hết SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ ĐÀ NẴNG TRƯỜNG THPT PHAN CHÂU TRINH ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2010-LẦN 1 Môn thi: TOÁN – Khối B CÂU Ý NỘI DUNG ĐIỂM Khi 4 2 1 2 3 m y x x      . Tập xác định D=R . 0,25 đ Giới hạn: lim ; lim x x y y       .   3 2 ' 4 4 4 1 y x x x x     . ' 0 0, 1 y x x      . 0,25 đ Bảng biến thiên: Hàm số đồng biến trên khoảng     1;0 , 1;   và nghịch biến trên khoảng     ; 1 , 0;1   . Hàm số đạt CĐ tại 0, 3 CD x y   và đạt CT tại 1, 2 CT x y    . 0,25 đ Ý 1 (1,0đ) Đồ thị cắt Oy tại (0;3). Đồ thị đối xứng qua Oy. 0,25 đ Phương trình HĐGĐ của đồ thị (1) và Ox: 4 2 2 4 2 2 0 x m x m m     (). 0,25 đ Đặt   2 0 t x t   , ta có : 2 2 4 2 2 0 t m t m m     (). 0,25 đ Câu I (2,0đ) Ý 2 (1,0đ) Ta có : ' 2 0 m     và 2 2 0 S m   với mọi 0 m  . Nên PT () có nghiệm dương. 0,25 đ KL: PT () có ít nhất 2 nghiệm phân biệt (đpcm). 0,25 đ PT 3sin 2 cos2 4sin 1 0 x x x      2 2 3sin cos 2sin 4sin 0 x x x x     . 0,25 đ   2 3cos sin 2 sin 0 x x x     . 0,25 đ Khi : 5 sin 3 cos 2 sin 1 2 3 6 x x x x k                  . 0,25 đ Ý 1 (1,0đ) Khi: sin 0 x x k     . KL: nghiệm PT là 5 , 2 6 x k x k       . 0,25 đ Ta có : 2 x y m   , nên : 2 2 1 y my y    . 0,25 đ PT 1 1 2 y m y y           ( vì y = 0 PTVN). 0,25 đ Xét     2 1 1 2 ' 1 0 f y y f y y y        0,25 đ Câu II (2,0đ) Ý 2 (1,0đ) Lập BTT. KL: Hệ có nghiệm duy nhất 2 m   . 0,25 đ Ta có:   2 , 1 1 1 . . 3 2 1 2 1 x x f x x x                  . 0,50 đ Ý 1 (1,0đ) KL:   3 1 1 9 2 1 x F x C x           . 0,50 đ Áp dụng BĐT Cô-si : 2 18 12 x x   (1). Dấu bằng xảy ra khi 1 3 x  . 0,25 đ Tương tự: 2 18 12 y y   (2) và 2 18 12 z z   (3). 0,25 đ Mà:   17 17 x y z      (4). Cộng (1),(2),(3),(4), ta có: 19 P  . 0,25 đ Câu III (2,0đ) Ý 2 (1,0đ) 1 19 3 P x y z      . KL: GTNN của P là 19 . 0,25 đ Gọi T là giao điểm của MN với CD; Q là giao điểm của PT với AD. Vẽ DD’ // BC, ta có: DD’=BM ' 1 3 TD DD TC MC    . 0,25 đ Mà: 1 2 / / 3 3 TD AP QD DP CP AT DP TC AC QA AT CA        . 0,25 đ Nên: . . . 1 3 1 1 . . 3 5 5 10 A PQN A PQN ABCD A CDN V AP AQ V V V AC AD      (1) 0,25 đ Câu IV (1,0đ) Và . . 2 3 1 1 . . 3 4 2 4 C PMN ABMNP ABCD C ABN V CP CM V V V CA CB      (2). 0,25 đ Từ (1) và (2), suy ra : 7 20 ABMNQP ABCD V V . KL tỉ số thể tích cần tìm là 7 13 hoặc 13 7 . Gọi     ;2 4 I m m d   là tâm đường tròn cần tìm. 0,25 đ Ta có: 4 2 4 4, 3 m m m m      . 0,25 đ Khi: 4 3 m  thì PT ĐT là 2 2 4 4 16 3 3 9 x y                 . 0,25 đ Câu Va (1,0đ) Khi: 4 m  thì PT ĐT là     2 2 4 4 16 x y     . 0,25 đ ĐK : 0 x  . Ta có: 2 4 2 1 log log 3log x x x   . 0,25 đ Đặt 2 log t x  .Ta có: 2 3 2 0 1, 2 t t t t       . 0,25 đ Khi: 1 t  thì 2 log 1 2( ) x x th    . 0,25 đ Ý 1 (1,0đ) Khi: 2 t  thì 2 log 2 4( ) x x th    . KL: Nghiệm PT 2, 4 x x   . 0,25 đ Ta có: 1 1 2 y x    0,25 đ Suy ra: ; 2 1 3, 1 x y Z x x x         0,25 đ Tọa độ các điểm trên đồ thị có hoành độ và tung độ là những số nguyên là     1;0 , 3;2 A B 0,25 đ Câu VIa (2,0đ) Ý 2 (1,0đ) KL: PT đường thẳng cần tìm là 1 0 x y    . 0,25 đ Ta có:   3;0; 3 3 2 AB AB     uuur . 0,25 đ Tương tự: 3 2 BC CA  . 0,25 đ Do đó: ABC  đều, suy ra tâm I đường tròn ngoại tiếp ABC  là trọng tâm của nó. 0,25 đ Câu Vb (1,0đ) KL: 5 8 8 ; ; 3 3 3 I        . 0,25 đ ĐK : 0 x  . Đặt 2 log t x  , ta có :   1 0 3 t t t    0,25 đ BPT 2 4 3 4 0 0 3 t t t        . 0,25 đ Ý 1 (1,0đ) KL: 2 3 4 1 log 0 1 3 2 2 x x       . 0,50đ Câu VIb (2,0đ) Ý 2 (1,0đ) Ta có:   2 ' 3 2 5 5 ; " 6 2 10 y x m x m y x m        . 0,25 đ 5 " 0 3 m y x     ; y’’đổi dấu qua 5 3 m x   . Suy ra:     3 2 5 5 5 5 ; 3 27 3 m m m m U             là điểm uốn 0,50 đ KL: 5 m  . 0,25 đ …HẾT… HƯỚNG DẪN CHẤM:  Học sinh có lời giải khác với đáp án chấm thi nếu có lập luận đúng dựa vào SGK hiện hành và có kết quả chính xác đến ý nào thì cho điểm tối đa ở ý đó ; chỉ cho điểm đến phần học sinh làm đúng từ trên xuống dưới và phần làm bài sau không cho điểm. Điểm toàn bài thi không làm tròn số.  Điểm ở mỗi ý nhỏ cần thảo luận kỹ để được chấm thống nhất . Tuy nhiên , điểm trong từng câu và từng ý không được thay đổi. . THÀNH PHỐ ĐÀ NẴNG TRƯỜNG THPT PHAN CHÂU TRINH ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2 010 -LẦN 1 Môn thi: TOÁN – Khối B Thời gian làm bài: 18 0 phút , không kể thời gian giao đề I. PHẦN CHUNG. TẠO THÀNH PHỐ ĐÀ NẴNG TRƯỜNG THPT PHAN CHÂU TRINH ĐÁP ÁN ĐỀ THI THỬ ĐẠI HỌC CAO ĐẲNG NĂM 2 010 -LẦN 1 Môn thi: TOÁN – Khối B CÂU Ý NỘI DUNG ĐIỂM Khi 4 2 1 2 3 m y x x      0,50 đ Ý 1 (1, 0đ) KL:   3 1 1 9 2 1 x F x C x           . 0,50 đ Áp dụng BĐT Cô-si : 2 18 12 x x   (1) . Dấu bằng xảy ra khi 1 3 x  . 0,25 đ Tương tự: 2 18 12 y y 

Ngày đăng: 28/07/2014, 18:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w