1. Trang chủ
  2. » Công Nghệ Thông Tin

100 STATISTICAL TESTS phần 1 pdf

25 370 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 332,8 KB

Nội dung

[...]... 1. 96 1. 96 2 0.05 1. 64 Data Conclusion H0 : µ0 = 4.0 n = 9, x = 4.6 ¯ σ = 1. 0 ∴ Z = 1. 8 1 Do not reject H0 [see Table 1] 2 Reject H0 6 10 0 STATISTICAL TESTS Test 3 Z-test for two population means (variances known and unequal) Hypotheses and alternatives 1 2 H0 : 1 − µ2 H1 : 1 − µ2 H0 : 1 − µ2 H1 : 1 − µ2 Z= Test statistics = µ0 = µ0 = µ0 > µ0 (¯ 1 − x2 ) − µ0 x ¯ 2 σ2 1 + 2 n1 n2 1 2 When used 2... degrees of freedom 2 2 (n1 − 1) s1 + (n2 − 1) s2 n1 + n2 − 2 1 DF = n1 + n2 – 2 0.025 0.025 –tn1 + n2 – 2; 0.025 tn1 + n2 – 2; 0.025 2 0.05 tn1 + n2 – 2; 0.05 H0 : 1 − µ2 = 0 n1 = 16 , n2 = 16 ¯ x1 = 5.0, x2 = 4 ¯ s = 2.0 ∴ t = 1. 414 Data Conclusion 1 2 t30; 0.025 = ±2.042 [see Table 2] Do not reject H0 t30; 0.05 = 1. 697 [see Table 2] Do not reject H0 EXAMPLES OF TEST PROCEDURES Test 10 9 Method of paired... freedom 1 DF = n – 1 0.025 –tn – 1; 0.025 0.025 tn – 1; 0.025 2 0.05 tn – 1; 0.05 n1 = 16 , d = 1. 0 s = 1. 0 ∴ t = 4.0 Data Conclusion 1 2 t15; 0.025 = ±2 .13 1 [see Table 2] Reject H0 t15; 0.05 = 1. 753 [see Table 2] Raject H0 10 10 0 STATISTICAL TESTS Test 15 χ 2 -test for a population variance Hypotheses and 1 alternatives 2 2 = σ0 2 = σ0 2 = σ0 2 > σ0 (n − 1) s2 2 σ0 Given a sample from a normal population... 1 2 H1 : 1 F= Test statistics 2 s1 2 s2 2 = σ2 2 = σ2 2 = σ2 2 > σ2 , 2 2 (s1 > s2 ) 2 2 where s1 and s2 are sample variances 2 2 (If, in 2, s1 < s2 , do not reject H0 ) 2 Given two sample with unknown variances 1 2 and normal populations and σ2 When used Critical region and degrees of freedom 1 DF = n1 – 1 and n2 – 1 0.025 Fn1 – 1, n2 – 1; 0.025 2 0.05 Fn1 – 1, n2 – 1; 0.05 2 2 H0 : 1 = σ2 n1... H1 : σ 2 H0 : σ 2 H1 : σ 2 1 DF = n – 1 0.025 2 χn – 1; 0.975 0.025 2 χn – 1; 0.025 2 0.05 2 χn – 1; 0.05 H0 : σ 2 = 4.0 n1 = 17 , s2 = 7.0 ∴ χ 2 = 28.0 Data Conclusion 2 16 ; 0.025 = 28.85 [see Table 5] ∴ Do not reject H0 2 2 16 ; 0.05 = 26.30 [see Table 5] ∴ Reject H0 1 EXAMPLES OF TEST PROCEDURES 11 Test 16 F -test for two population variances Hypotheses and 1 alternatives 2 2 H0 : 1 2 H1 : 1. .. 0.025 = ±2.306 [see Table 2] Reject H0 t8; 0.05 = 1. 860 (left-hand side) [see Table 2] Reject H0 8 10 0 STATISTICAL TESTS Test 8 t-test for two population means (variance unknown but equal) Htypotheses and alternative H0 : 1 − µ2 H1 : 1 − µ2 2 H0 : 1 − µ2 H1 : 1 − µ2 1 t= Test statistics = µ0 = µ0 = µ0 > µ0 (¯ 1 − x2 ) − ( 1 − µ2 ) x ¯ 1 1 + s n2 n1 1 2 where s2 = Given two samples from normal populations... that the mean µ of a population with known variance has the value µ0 rather than the value 1 Test 61 To test the null hypothesis that the standard deviation σ of a population with a known mean has the value σ0 rather than the value 1 86 88 89 91 93 94 95 96 97 98 99 10 1 10 2 10 4 10 6 10 7 10 8 10 9 11 0 11 2 11 4 ... = σ2 n1 = 11 , n2 = 2 2 s1 = 6.0, s2 = Data ∴ F = 2.0 Conclusion 16 3.0 F10, 15 ; 0.025 = 3.06 Do not reject H0 2 F10, 15 ; 0.05 = 2.54 [see Table 3] Do not reject H0 1 12 10 0 STATISTICAL TESTS Test 37 χ 2 -test for goodness of fit Hypotheses and alternatives Goodness of fit for Poisson distribution with known mean λ Test statistics χ2 = (Oi − Ei )2 Ei Oi is the ith observed frequency, i = 1 to k; Ei... ¯ 2 σ2 1 + 2 n1 n2 1 2 When used 2 When the variances of both populations, 1 2 , are known Populations are normally and σ2 distributed Critical region Using α = 0.05 [see Table 1] 1 0.025 0.025 1. 96 1. 96 2 0.05 1. 64 Data Conclusion H0 : 1 − µ2 = 0 n1 = 9, n2 = 16 ¯ x1 = 1. 2, x2 = 1. 7 ¯ 2 2 1 = 1, σ2 = 4 ∴ Z = −0.832 1 Do not reject H0 2 Do not reject H0 EXAMPLES OF TEST PROCEDURES Test 7 7 t-test... H1 : µ = µ0 2 H0 : µ = µ0 H1 : µ > µ0 1 t= Test statistics x − µ0 ¯ √ s/ n where s2 = If σ 2 is not known and the estimate s2 of σ 2 is based on a small sample (i.e n < 20) and a normal population When used Critical region and degrees of freedom (x − x )2 ¯ n 1 1 DF = n 1 0.025 0.025 –tn 1; 0.025 tn 1; 0.025 2 0.05 tn 1; 0.05 H0 : µ0 = 4.0 n = 9, x = 3 .1 ¯ s = 1. 0 ∴ t = −2.7 Data Conclusion 1 . GOKA: “FM” — 2006/6 /15 — 15 : 21 — PAGEi— #1 10 0 STATISTICAL TESTS GOKA: “FM” — 2006/6 /15 — 15 : 21 — PAGE ii — #2 GOKA: “FM” — 2006/6 /15 — 15 : 21 — PAGE iii — #3 10 0 STATISTICAL TESTS 3rd Edition Gopal. 1 and n 2 – 1 F n 1 – 1, n 2 – 1; 0.025 2. 0.05 F n 1 – 1, n 2 – 1; 0.05 Data H 0 : σ 2 1 = σ 2 2 n 1 = 11 , n 2 = 16 s 2 1 = 6.0, s 2 2 = 3.0 ∴ F = 2.0 Conclusion 1. F 10 , 15 ; 0.025 = 3.06. Do. µ 2 = µ 0 2. H 0 : µ 1 − µ 2 = µ 0 H 1 : µ 1 − µ 2 >µ 0 Test statistics t = (¯x 1 −¯x 2 ) −(µ 1 − µ 2 ) s  1 n 1 + 1 n 2  1 2 where s 2 = (n 1 − 1) s 2 1 + (n 2 − 1) s 2 2 n 1 + n 2 − 2 . When

Ngày đăng: 23/07/2014, 16:21

TỪ KHÓA LIÊN QUAN

w