Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 625 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
625
Dung lượng
44,65 MB
Nội dung
HỒ XUÂN TRỌNG NĂM 2014 100 Đ Ề THI TH Ử Đ Ạ I H Ọ C 2014 MÔN TOÁN TRNGTHPTCHUYấNVNHPHC KTHITHIHCLN1NMHC20132014 Mụn:Toỏn12.Khi D. Thigianlmbi:180phỳt(Khụngkthigiangiao) A.PHNCHUNGCHOTTCTHSINH(7,0im) Cõu I(2,0im).Chohms 3 2 y x ( 2m 1)x m 1 = - + + - - ( Cm ). 1) Khosỏtsbinthiờnvvthcahmskhi m 1 = . 2) Tỡm m ngthng y 2mx m 1 = - - ctctthhms(Cm )tibaimphõnbitcú honhlpthnhmtcpscng. CõuII(2, 0im)1)Giiphngtrỡnh: ( ) 3 2 2 sin x 3 3sin x 2 sin x 3 tan x - = + - . 2)Giihphngtrỡnh: ( ) ( ) 2 2 2 4 9 x y 2xy 13 x y 1 2x 3 x y ỡ + + + = ù - ù ớ ù + = ù - ợ . CõuIII(1,0im). Tớnhgiihn: 3 x 2 3x 2 3x 2 L lim x 2 đ + - - = - Cõu IV (1,0 im). Cho hỡnh chúp S.ABCD cú ỏy l hỡnh bỡnh hnh vi AB 2a = , BC a 2 = , BD a 6 = .Hỡnhchiuvuụnggúcca S lờnmtphng ABCD ltrngtõm G catamgiỏc BCD , bit SG 2a = . Tớnhthtớch V cahỡnhchúp S.ABCD vkhongcỏchgiahaingthng AC v SB theo a . CõuV(1,0im).Cho ,x y lcỏcsdngthomón 1 1 1 3 xy x y + + = .Tỡmgiỏtrlnnhtcabiu thc: 2 2 3 3 1 1 1 ( 1) ( 1) y x M x y y x x y x y = + + - - + + + B.PHNRIấNG (3im). Thớsinhchclmmttronghaiphn(phn1 hoc2) 1.TheochngtrỡnhChun CõuVIA(2,0im)1)Trongmtphngvihtrcto Oxy ,chohỡnhthangcõn ABCD cúhai ỏyl AB , CD haingchộo AC , BD vuụnggúcvinhau.Bit ( ) A 03 , ( ) B 34 v C nmtrờn trchonh.Xỏcnhtonh D cahỡnhthang ABCD . 2)Tỡmshngkhụngcha x trongkhaitrin: ( ) n 3 2 p x x x ổ ử = + ỗ ữ ố ứ .Bitrngsnguyờndng n thomón 6 7 8 9 8 n n n n n 2 C 3C 3C C 2C + + + + = CõuVIIA(1,0im).Xỏcnhm hm s: ( ) ( ) 2 y m 3m x 2 m 3 cos x = - + - luụnnghchbintrờnĂ 2.Theochngtrỡnhnõngcao. CõuVIB (2,0im)1)Trong mtphngvihta Oxy ,lpphng trỡnhchớnhtccaelip ( ) E bitrngcúmtnhvhaitiờuimca ( ) E tothnhmttamgiỏcuvchuvihỡnhchnht csca ( ) E l ( ) 12 2 3 + . 2)Tớnhtng : 2 3 2013 2013 2013 2013 S 1.2.C 2.3.C 2012.2013.C = + + + L CõuVIIB (1, 0 im).Xỏc nh m hm s: ( ) ( ) 2 2 y m m 1 x m m 1 sin x 2m = + + + - + + luụn ng bintrờn Ă HT CmnthyNguynDuy Liờn(lientoancvp@vinhphuc.edu.vn)giti www.laisac.page.tl chớnhthc (thigm01trang) TRNGTHPTCHUYấNVNHPHC KTHITHIHCLN1NMHC20132014 Mụn:Toỏn12.Khi D. Thigianlmbi:180phỳt(Khụngkthigiangiao) HNGDNCHMTHI (Vnbnnygm05trang) I)Hngdnchung: 1)Nuthớsinhlmbikhụngtheocỏchnờutrongỏpỏnnhngvnỳngthỡchosimtng phnnhthangimquynh. 2)Vicchitithoỏthangim(nucú)tronghngdnchmphimbokhụnglmsailch hngdnchmvphicthngnhtthchintrongcỏcgiỏoviờnchmthi. 3)imtonbitớnhn0,25im.Saukhicngimtonbi,ginguyờnktqu. II)ỏpỏnvthangim: Cõu ỏpỏn im Chohms 3 2 y x ( 2m 1)x m 1 = - + + - - (Cm ) . 1)Khosỏtsbinthiờnvvthcahmskhi m 1 = . 1,0 CõuI Khi m 1 = hmstrthnh 3 2 y x 3x 2 = - + - Tpxỏcnh:Rhmsliờntctrờn R. Sbinthiờn:lim x y đ-Ơ = +Ơ lim x y đ+Ơ = -Ơ .thhmskhụngcútimcn. 0,25 2,0 Bngbinthiờn: x à 01 2+à y +0 0+ y +à 2 y U =0 2 à 0.25 thcahmscúdngnhhỡnhdiõy: 0.25 2)Tỡm m ngthng y 2mx m 1 = - - ct(Cm )tibaimphõnbitcúhonh lpthnhmtcpscng 1,0 Xộtphngtrỡnhhonh giaoim: 3 2 x ( 2m 1)x m 1 2mx m 1 - + + - - = - - 3 2 x ( 2m 1)x 2mx 0 - + + = ( ) 2 x x ( 2m 1)x 2m 0 - + + = x 0 x 1 x 2m = ộ ờ = ờ ờ = ở 0.25 chớnhthc (thigm01trang) Bagiaoiml: ( ) A 0 m 1 - - ( ) B 1m 1 - ( ) 2 C 2m4m m 1 - - Tacú: A , B , C phõnbit 1 m 0m 2 ạ ạ (*) Spspcỏchonhtheothttngdntacúcỏcdóyssau ã 0 1 2m lpthnhcpscng 0 2m 2.1 m 1 + = = thomón(*) ã 0 2m 1lpthnhcpscng 1 0 1 2.2m m 4 + = = thomón(*) ã 2m 0 1 lpthnhcpscng 1 2m 1 2.0 m 2 + = = - thomón(*) 0.25 0.25 Ktlun:m= 1 1 1 2 4 - 0.25 1)Giiphngtrỡnh: ( ) 3 2 2 sin x 3 3sin x 2 sin x 3 tan x - = + - .(1) CõuII iukin: cos x 0 ạ Phngtrỡnh óchotngngvi: ( ) 3 2 2 sin x.cos x 3cos x 3 sin x 2 sin x 3 sin x - = + - 3 2 2 2 sin x.cos x 3cos x 3cos x.sin x 2 sin x - = - + 0.25 2,0 ( ) ( ) 2 2 sin x sin x.cos x 1 3cos x sin x.cos x 1 0 - + - = ( ) ( ) 2 sin x.cos x 1 2 sin x 3cos x 0 - + = ( ) 2 1 sin 2x 1 2 2cos x 3cos x 0 2 ổ ử - - + = ỗ ữ ố ứ 0.25 2 2 cos x 3cos x 2 0 - - = (dosin 2x 2 0, x - ạ " ) ( ) cos x 2 VN 1 cos x 2 ộ = ờ ờ = - ờ ở 0.25 1 2 cos x x k2 ,k 2 3 p = - = + p ẻ  ( thomón iukin) Vyphngtrỡnhcúhaihnghim: 2 x k 2 ,k 3 p = + p ẻ 0.25 2)Giihphngtrỡnh: ( ) ( ) 2 2 2 4 9 x y 2xy 13 x y 1 2x 3 x y ỡ + + + = ù - ù ớ ù + = ù - ợ . Vitlihphngtrỡnh: ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 1 5 x y 4 x y 13 x y 1 x y x y 3 x y ỡ ộ ự ù + + - + = ờ ỳ - ù ờ ỳ ở ỷ ớ ù + + - + = ù - ợ /K x y 0 - ạ 0.25 t 1 a x y b x y x y = + = - + - iukin b 2 . Hóchotrthnh: ( ) 2 2 2 5 5a 4 b 2 13 a 1 a 9a 24a 15 0 3 b 3 a a b 3 b 3 a ỡ ỡ + - = ỡ = = - + = ù ù ớ ớ ớ = - + = ợ ù ù ợ = - ợ 0.25 x y 1 a 1 x y 1 x 1 1 x y 2 b 2 x y 1 y 1 x y + = ỡ = + = = ỡ ỡ ỡ ù ã ớ ớ ớ ớ - + = = - = = ợ ợ ợ ù - ợ 0.25 5 a 3 5 4 b 3 a 3 3 3 ỡ = ù ù ã ớ ù = - = - = ù ợ Loi Vyhphngtrỡnhcúmtnghimduynht ( ) ( ) x y 11 = 0.25 Tớnhgiihn : 3 x 2 3x 2 3x 2 L lim x 2 đ + - - = - 1,0 CõuIII L ( ) ( ) 3 3 1 2 x 2 x 2 3x 2 2 2 3x 2 3x 2 2 3x 2 2 lim lim L L x 2 x 2 x 2 đ đ + - + - - ổ ử + - - - = = - = - ỗ ữ ỗ ữ - - - ố ứ 0.25 1,0 ( ) ( ) ( ) 3 1 x 2 x 2 2 3 3 1 2 x 2 3 3 3x 2 2 3x 2 8 L lim lim x 2 x 2 3x 2 2 3x 2 4 3 1 L lim 4 3x 2 2 3x 2 4 đ đ đ + - + - = = - ổ ử - + + + + ỗ ữ ố ứ = = + + + + 0.25 ( ) ( ) 2 x 2 x 2 2 x 2 3x 2 2 3x 2 4 L lim lim x 2 x 2 3x 2 2 3 3 L lim 4 3x 2 2 đ đ đ - - - - = = - - - + = = - + 0.25 1 2 1 3 1 L L L 4 4 2 = - = - = - 0.25 CõuIV Cho hỡnh chúp S.ABCD cú ỏy l hỡnh bỡnh hnh vi AB 2a = , BC a 2 = , BD a 6 = .Hỡnhchiuvuụnggúcca S lờnmtphng ABCD ltrngtõm G ca tamgiỏc BCD ,bit SG 2a = . Tớnhthtớch V cahỡnhchúp S.ABCD vkhongcỏchgiahaingthng AC v SB theo a . 1,0 1,0 NhnxộtABCDlhỡnhchnht(do 2 2 2 AB AD BD ) + = 0.25 3 S .ABCD ABCD 1 4 2 V SG.S a 3 3 = = 0.25 K limi xng viDqua C, H l hỡnhchiuvuụnggúc ca G lờnBKsuyra BK ( SHG ) ^ .GiIlhỡnhchiuvuụnggúccaGlờnSHsuyraGI=d(AC,SB) 0.25 CUV GH=CJm 2 2 2 1 1 1 2a 2a CJ GH CJ BC CK 3 3 = + ị = ị = TamgiỏcSHGvuụngGsuyraGI=a. Vy:d(AC,SB)=a Cho ,x y lcỏcsdngthomón 1 1 1 3 xy x y + + = .Tỡmgiỏtrlnnhtcabiuthc: 2 2 3 3 1 1 1 ( 1) ( 1) y x M x y y x x y x y = + + - - + + + 0.25 1,0 Cỏch1 t 1 1 0, 0a b x y = > = > ,theobitacú ( ) ( ) 2 3 4 a b a b ab + - + = Ê (BTCauchy), kthpvi 0a b + > suyra 2a b + 0.25 Tatỡmgiỏtrlnnhtca 2 2 3 3 1 1 a b ab M a b b a a b = + + - - + + + 2 2 ( ) 2 3 ( ) 2 1 a b ab a b ab a b ab ab a b a b + - + + = + - + + + + + + 2 1 12 ( ) 2 4 a b a b a b ộ ự = - + + + + + ờ ỳ + ở ỷ (do 3 ( )ab a b = - + ) 0.25 t 2t a b = + xộthms: 2 12 ( ) 2g t t t t = - + + + trờn [ ) 2+Ơ 2 12 ( ) 2 1 0, 2g t t t t  = - - + < " suyra ( )g t nghchbintrờn (2, ) +Ơ 0.25 Do ú [ ) 2, max ( ) (2) 6g t g +Ơ = = suy ra giỏ tr ln nht ca M bng 3 2 t c khi 1 1a b x y = = = = . 0,25 Cỏch 2 t 1 1 0, 0a b x y = > = > ,theobitacú 2 2 3 3 1 1 a b ab M a b b a a b = + + - - + + + 0.25 ( ) ( ) 2 2 1 1 a ab b a a ab b b ab M a b b a a b + + + + = + + - - + + + . 0.25 ( ) 1 1 1 2 2 2 2 ab ab ab ab ab ab M a b b a ab b a a b b a ab = + + Ê + + = + + + + + (BTAMGM) 0.25 ( ) ( ) ( ) 1 1 1 1 3 2 2 2 2 2 2 a b b a a b M a b b a ab ộ ự + + + Ê + + Ê + + = ờ ỳ ở ỷ ,(BTAMGM) dubngkhi a b 1 = = Vygiỏtrlnnhtca M bng 3 2 tckhi 1 1a b x y = = = = . 0,25 Cõu VIA 1)Trongmtphngvihtrcto Oxy ,chohỡnhthangcõn ABCD cúhaiỏyl AB , CD haingchộo AC , BD vuụnggúcvinhau.Bit ( ) A 03 , ( ) B 34 v C nmtrờntrchonh.Xỏcnhtonh D cahỡnhthang ABCD . 1,0 2,0 ( ) ( ) C Ox C c0 DC : x 3y c 0 D( 3d cd ) ẻ ị - - = ị + 0.25 2 AC(0 3 )BD( 3d c 3d 4 ) AC BD 3dc c 3c 3d 12 0(1) - + - - ^ ị + - - + = uuur uuur 0.25 IltrungimAB 3 7 I( ) 2 2 ị JltrungimDC 3d 2c d J 2 2 + ổ ử ị ỗ ữ ố ứ ,t 8 3c IJ AB d ( 2 ) 5 - ^ ị = 0.25 Thay(2)vo(1)cú: 2 c 6 2c 9c 18 0 3 c 2 = ộ ờ - - = - ờ = ở c 6 d 2 D( 0 2 )(tm ) 3 5 5 c d D( 6 )( ktm ) 2 2 2 = ị = - ị - - = ị = ị (HcsinhphikimtraiukinthụngquavộctABvvộctDCcựngchiu) Ktlun: D( 0 2 ) - 0,25 2)Tỡmshngkhụngcha x trongkhaitrin: ( ) n 3 2 p x x x ổ ử = + ỗ ữ ố ứ .Bitrngs nguyờndng n thomón 6 7 8 9 8 n n n n n 2 C 3C 3C C 2C + + + + = 1,0 iukin: * n ,n 9 ẻ Ơ 9 8 8 9 8 9 8 n 3 n 2 n 2 n 2 n 2 n 2 n 2 C 2C C C 2C C C n 15 + + + + + + + = + = = = 0.25 Khiú ( ) ( ) 15 k 30 5k 15 15 15 k k k k 3 3 6 15 15 k 0 k 0 2 2 p x x C x C 2 x x x - - = = ổ ử ổ ử = + = = ỗ ữ ỗ ữ ố ứ ố ứ ồ ồ 0.25 Shngkhụngcha x tngngvi 30 5k 0 k 6 6 - = = 0.25 Shngkhụngcha x phitỡml 6 6 15 C .2 320320 = 0,25 Xỏcnh m hms: ( ) ( ) 2 y m 3m x 2 m 3 cos x = - + - luụnnghchbintrờn Ă 1,0 Cõu ohm: ( ) 2 y m 3m 2 m 3 sin x  = - - - 0,25 VIIA iukinhmsluụnnghchbintrờnĂ y 0 x Â Ê " ẻĂ ( ) ( ) [ ] 2 2 m 3m 2 m 3 sin x 0 x m 3m 2 m 3 t 0 t 11 ,t sin x - - - Ê " ẻ - - - Ê " ẻ - = Ă 0,25 Đồthị ( ) ( ) 2 f t 2 m 3 t m 3m = - - + - trênđoạn [ ] 1;1 - làmộtđoạnthẳng để ( ) [ ] ( ) ( ) f 1 0 f t 0 t 1;1 f 1 0 ì - £ ï £ " Î - Û í £ ï î 0,25 ( ) ( ) ( )( ) ( )( ) 2 2 2 m 3 m 3m 0 m 3 m 2 0 2 m 3 2 m 3 2 m 3 m 3 m 2 0 2 m 3 m 3m 0 ì ì - + - £ - + £ - £ £ ì ï ï Û Û Û £ £ í í í £ £ - - £ - - + - £ î ï ï î î Vậyđểhàmsốnghịchbiếntrên ¡ thì 2 m 3 £ £ 0,25 Câu VIB 2,0đ 1)TrongmặtphẳngvớihệtọađộOxy ,lậpphươngtrìnhchínhtắccủaelip ( ) E biếtrằng có một đỉnh và hai tiêu điểm của ( ) E tạo thành một tam giác đều và chu vi hình chữnhậtcơsởcủa ( ) E là ( ) 12 2 3 + . ( ) ( ) 2 2 2 2 : 1 0 x y E a b a b + = > > với2tiêuđiểm ( ) ( ) ( ) 2 2 2 1 2 ;0 ; ;0 , 0F c F c c a b c - = - > 1,0đ 0,25 2đỉnhtrêntrụcnhỏlà ( ) ( ) 1 2 0; , 0;B b B b - theogt:tamgiác ( ) 1 1 2 1 1 B F F B F F ÚD đều vàchuvihìnhchữnhậtcơsởcủa ( ) E là ( ) 12 2 3 + . 0,25 ( ) ( ) ( ) 2 2 2 2 2 6 3 2 3 3 : 1 2 36 27 3 4 12 2 3 c a b a x y b c b E c a b ì = - = ì ï ï ï = Û = Û + = í í ï ï = î ï + = + î 0,5 2)Tínhtổng: 2 3 2013 2013 2013 2013 S 1.2.C 2.3.C 2012.2013.C = + + + L 1,0đ Xétsốhạngtổngquát: ( ) k 2013 k 1 .k.C k 2,3, ,2013. - " = 0,25 ( ) ( ) ( ) k k 2 2013 2011 2013! k 1 .k.C k 1 .k. 2012.2013.C k 2,3, ,2013 k ! 2013 k ! - - = - = " = - 0,25 Vậy ( ) 0 1 2 2011 2011 2011 2011 2011 S 2012.2013. C C C C = + + + + L 0,25 ( ) 2011 2011 S 2012.2013. 1 1 2012.2013.2 = + = 0,25 Câu Xácđịnh m đểhàmsố: ( ) ( ) 2 2 y m m 1 x m m 1 sin x 2m = + + + - + + đồngbiếntrên ¡ 1,0 7B Đạohàm ( ) ( ) 2 2 y m m 1 m m 1 cos x ¢ = + + + - + 1,0đ Điềukiệnhàmsốluônnghịchbiến trên¡ y 0 x ¢ Û ³ " Ρ 0,25 ( ) ( ) 2 2 m m 1 m m 1 cos x 0 x + + + - + ³ " Ρ ( ) ( ) [ ] 2 2 m m 1 m m 1 t 0 t 1;1 + + + - + ³ " Î - với t cos x = 0,25 Đồ thị ( ) ( ) ( ) [ ] 2 2 f t m m 1 m m 1 t , t 1;1 = + + + - + " Î - trênđoạn [ ] 1;1 - là một đoạnthẳngđể ( ) [ ] ( ) ( ) f 1 0 f t 0 t 1;1 f 1 0 ì ³ ï ³ " Î - Û í - ³ ï î 0,25 Û 2 2m 2 0 m m 0 2m 0 ì + ³ " Î Þ ³ í ³ î ¡ .Vậy m 0 ³ thoảmãnyêucầubàitoán 0,25 CảmơnthầyNguyễnDuy Liên(lientoancvp@vinhphuc.edu.vn)gửitới www.laisac.page.tl TRƯỜNGTHPTCHUYÊNVĨNHPHÚC KỲTHITHỬĐẠIHỌCLẦN1NĂMHỌC20132014 Môn:Toán12.Khối A,A1,B. Thờigianlàmbài:180phút(Khôngkểthờigiangiaođề) A.PHẦNCHUNGCHOTẤTCẢTHÍSINH(8,0điểm) Câu 1.(2,5điểm). Chohàmsố 3 2 y mx ( 2m 1)x m 1 = - + + + ( Cm ). 1) Khảosátsựbiếnthiênvàvẽđồthịcủahàmsốkhi m 1 = . 2) Tìmtấtcảcácgiátrịcủathamsố m 0 ¹ saochotiếptuyếncủađồthịtạigiaođiểmcủanóvới trụctungtạovớihait rụctoạđộmộttamgiáccódiệntíchbằng4. Câu2. (1,25 điểm) . Giảiphươngtrình: ( ) ( ) ( ) ( ) 3 3 3 1 3 cos 2x 3 1 3 sin 2x 8 sin x cos x 3 sin x cos x 3 3 3 - + + = + + - - . Câu3.(1,25điểm) .Giảihệphươngtrình: ( ) 2 1 x x y x y x, y 5y 1 x y 1 ì - = - ï Î í ï - - = î ¡ . Câu4. (1,0điểm). Tínhgiớihạn: 3 4 x 2 x 6 7x 2 L lim x 2 ® + - + = - Câu5.(1,0điểm).Chohìnhchóp S.ABCD cóđáylàhìnhvuôngvớicạnh 2a ,mặtbên ( ) SAB nằm trongmặtphẳngvuônggócvớimặtphẳng ( ) ABCD và SA a ,SB a 3 = = . Hãytính thểtíchcủahìnhchóp S.ABCD vàkhoảngcáchgiữahaiđườngthẳng AC và SB theo a . Câu6.(1,0điểm).Xétcácsốthựcdương , ,a b c thoảmãn 7ab bc ca abc + + = .Tìm giátrị nhỏ nhất củabiểuthức: 4 5 6 2 2 2 8 1 108 1 16 1a b c P a b c + + + = + + B.PHẦNRIÊNG (2,0điểm). Thísinhchỉđượclàmmộttronghaiphần(phần1 hoặc 2) 1.TheochươngtrìnhChuẩn Câu7A.(1,0điểm) .TrongmặtphẳngvớihệtrụctoạđộOxy ,chohìnhbìnhhành A BCD có ( ) A 2;0 ( ) ,B 3;0 vàdiệntíchbằng 4 .Biếtrằnggiaođiểmcủahaiđườngchéo AC và BD nằmtrênđường thẳng y x = ,hãytìmtoạđộcủacácđỉnhC,D. Câu8A(1,0điểm).Tínhtổng: 2 1 2 2 2 3 2 2013 1 2013 2013 2013 201 3 S 1 .C 2 .C 3 .C 2013 .C = + + + + L 2.Theochươngtrìnhnângcao. Câu7B(2,0điểm).Trongmặtphẳngvớ ihệtọađộOxycho tamgiác ABC cóđườngcaokẻtừ B và phângiáctrongkẻtừ A lầnlượtcóphươngtrình : 3x 4y 10 0 + + = và x y 1 0 - + = .Biếtrằngđiểm ( ) M 0;2 nằmtrênđườngthẳng AB và MC 2 = ,tìmtoạđộcácđỉnhcủatamgiác. Câu8 B(1,0điểm). Tínhtổng: 0 1 2 2013 2013 2013 2013 2013 2 C C C C S 1 2 3 2014 = + + + + L HẾT CảmơnthầyNguyễnDuy Liên(lientoancvp@vinhphuc.edu.vn)gửitới www.laisac.page.tl Đềchínhthức (Đềthigồm01trang) SGDTVNHPHC THIKHSCLLNINMHC2013 2014 TRNGTHPTCHUYấN HNGDNCHMTON 12A,B,A1 Hngdnchung. Mimtbitoỏncúthcúnhiucỏchgii,trongHDCnychtrỡnhbyslcmtcỏch gii. Hc sinh cúthgiitheonhiucỏchkhỏcnhau,nuývchoktquỳng,giỏmkho vnchoimtiacaphnú. Cõu(Hỡnhhckhụngg ian),nuhcs inhvhỡnhsaihockhụngvhỡnhchớnhcabitoỏn, thỡkhụngchoimcõu(Hỡnhhcgiitớch)khụngnhtthitphivhỡnh. imtonbichmchititn0.25,khụngl mtr ũn. HDCnycú04 trang. Cõu Nidungtrỡnhby im 1. Khi 3 1:y x 3 2m x = = - + +TX: Ă +Sbinthiờn: ( )( ) 2 3 3 3 1 1 , 0 1y x x x y x   = - = - + = = 0.25 0 1 1y x x  > < - > suyrahmsngbintrờn cỏckhong ( ) ( ) 1 , 1 -Ơ - +Ơ 0 1 1y x  < - < < suyrahmsnghchbintrờn ( ) 11 . - Hmstcciti ( ) 1, 1 4 cd x y y = - = - = hmstcctiuti ( ) 1, 1 0. ct x y y = = = 0.25 3 3 2 3 2 3 3 2 3 2 lim lim 1 lim lim 1 x x x x y x y x x x x x đ-Ơ đ-Ơ đ+Ơ đ+Ơ ổ ử ổ ử = - + = -Ơ = - + = +Ơ ỗ ữ ỗ ữ ố ứ ố ứ y y' x 0 4 + + + + 0 0 1 1 0.25 +th 0.50 2. th 3 ( ) : (2 1) 1 m C y mx m x m = - + + + cttrctungti (0 1)M m + . ( ) ( ) 2 3 (2 1) y 0 2 1y mx m m   = - + ị = - + 0.25 1 Tú,khi 0,m ạ tiptuyn m t ca( ) m C ti Mcúphngtrỡnh 0.25 G iaoOx: ( ) ( ) 20 , 10 - G iaoOy: ( ) 02 imun: ( ) 02I suyra thtxngqua ( ) 02I 4 2 [...]... 2013 1 2 3 2014 k C Số hạng tổng qt của tổng là ak = 2013 " k = 0,1,2, ,2013 k + 1 k C 2013! 1 2014 ! ak = 2013 = = × " k = 0,1,2, ,2013 k + 1 ( k + 1) × k ! ( 2013 - k ) ! 2014 ( k + 1) ! ( 2013 - k ) ! Vậy ta được S2 = C k +1 ak = 2014 2014 " k = 0,1,2, ,2013 1 1 é 2 2014 - 1 2014 1 2 2014 × ( C2014 + C2014 + L + C2014 ) = × ( 1 + 1) - C 0 ù = 2014 û 2014 2014 ë 2014 Cảm ơn thầy Nguyễn Duy Liên(lientoancvp@vinhphuc.edu.vn) gửi tới ... Cảm ơn bạn Vũ Cơng Viên(toilatoi1908@gmail.com) gửi tới www.laisac.page.tl SỞ GD & ĐT BẮC NINH TRƯỜNG THPT LÝ THÁI TỔ ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM HỌC 2013 -2014 Mơn: TỐN; Khối A, A1 Thời gian: 180 phút, khơng kể thời gian phát đề Ngày thi 02/11/2013 2x − 4 x −1 a Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số b Tìm m để đường thẳng d có phương trình y = 2 x + m cắt đồ thị (C) tại hai điểm phân... ơn bạn (huynhltt@yahoo.com) đã gửi tới www.laisac.page.tl 0.25 0.25 TRƯỜNG THPT TRIỆU SƠN 4 TỔ TỐN –TIN Đề chính thức ĐỀ KHẢO SÁT CHẤT LƯỢNG THI ĐẠI HỌC NĂM HỌC:2013 - 2014 MƠN: TỐN KHỐI A , A1- B - D Thời gian làm bài: 180 phút – khơng kể thời gian phát đề Đề gồm 01 trang I PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm): x 1 Câu 1 (2 điểm) Cho hàm số: y (C) 2( x 1) 1 Khảo sát sự biến thi n và vẽ đồ thị (C) của hàm số 2 Tìm những điểm M trên... 0.25 0.25 0.25 0.25 0.25 TRƯỜNG THPT QUẾ VÕ 1 - ĐỀ THI THỬ ĐH LẦN 1, NĂM HỌC 2013 -2014 Mơn: Tốn khối A,A1,B,D Thời gian làm bài: 180 phút, khơng kể thời gian phát đề (Dành cho học sinh lớp 11 mới lên 12) I - PHẦN CHUNG CHO TẤT CẢ THÍ SINH THI KHỐI A,A1,B,D (7,0 điểm) Câu1: (2,0 điểm) Cho hàm số y = x 2 − 2 x − 3 (P) a/ Khảo sát sự biến thi n và vẽ đồ thị (P) của hàm số b/Tìm m để đường thẳng... Hết Cảm ơn bạn (hongnhung79@yahoo.com) gửi tới www.laisac.page.tl ĐỀ KHẢO SÁT CHẤT LƯỢNG THI ĐẠI HỌC NĂM HỌC: 2013 - 2014 TRƯỜNG THPT TRIỆU SƠN 4 HƯỚNG DẪN CHẤM Đề chính thức MƠN: TỐN Thời gian làm bài: 180 phút I PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm): Câu Ý 1 Hướng dẫn chấm TXĐ: D = R\ 1 Chiều biến thi n: y , 1 1đ Điểm 1 0 , với x D ( x 1)2 0.25 hàm số đồng biến trên... liệu Cán bộ coi thi khơng giải thích gì thêm Họ và tên thí sinh: Số báo danh: Cảm ơn bạn (huynhltt@yahoo.com) đã gửi tới www.laisac.page.tl SỞ GD & ĐT BẮC NINH TRƯỜNG THPT LÝ THÁI TỔ ĐÁP ÁN – THANG ĐIỂM ĐỀ THI THỬ ĐẠI HỌC LẦN 1 NĂM 2013 Mơn: TỐN; Khối A, A1 (Đáp án – thang điểm gồm 04 trang) Câu Đáp án 1 a (1.0 điểm) Khảo sát… (2.0 điểm) • Tập xác định: D = ℝ \ {1} • Sự biến thi n: lim y =... cos 4 − x − cos 4 x = 2sin 2 x − 1 2 HẾT -Thí sinh khơng được sử dụng tài liệu Cán bộ coi thi khơng giải thích gì thêm Họ và tên thí sinh: ; Số báo danh Xin cảm ơn (hongnhung79@yahoo.com.vn) đã gửi tới www.laisac.page.tl 1 HƯỚNG DẪN CHẤM THI THỬ ĐH LẦN 1 NĂM HỌC 2013 -2014 TRƯỜNG THPT QUẾ VÕ 1 Mơn: Tốn khối A, A1, B,D - Lớp 11 Câu 1 (2,0 điểm) Điểm NỘI DUNG a (1,0 điểm) TXĐ:R,... viên bi H t Chú ý: Giáo viên coi thi khơng gi i thích gì thêm H và tên thí sinh: .S bao danh: Cảm ơn bạn Vũ Cơng Viên(toilatoi1908@gmail.com) gửi tới www.laisac.page.tl H NG D N CH M VÀ CHO I M Mơn: Tốn (Thi Th H l n 1 - N m h c 2013 - 2014) N i dung c b n Câu Câu 1 Cho hàm s y = 2 x3 − 3(2m + 1) x2 + 6m(m + 1) x + 1 có th (Cm) 2 a) Kh o sát s bi n thi n và v th c a hàm s khi m = 0 a (1... 2 x − sin 2 x) = − (1 − 2sin 2 x ) = 2sin 2 x − 1 =VP(**) (đpcm) 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 Lưu ý: Học sinh làm theo cách khác đúng thì cho điểm tối đa Xin cảm ơn (hongnhung79@yahoo.com.vn) đã gửi tới www.laisac.page.tl 5 Tr IH CL N1 THI TH N M H C 2013 - 2014 Mơn: Tốn - kh i A, A1, B, D Th i gian làm bài 180 phút, khơng k th i gian phát S GD& T B c Giang ng THPT L c Ng n s 1... tọa độ hay dựng đoạn vng góc chung. Nếu cách giải đúng và cho kết quả đúng, giám khảo vẫn cho điểm tối đa của phần đó. Cách giải trong bài tốn này sử dụng kết quả của Bài tập 6 (tr. 26) SGK Hình học 12 (CCT) 6 1 1 1 Viết lại giả thi t về dạng + + = 7 0.25 a b c Áp dụng bất đẳng thức AMGM, ta có 1 1 A = 8a 2 + 2 ³ 4," = " Û a = 2a 2 2 2 2 1 B = 54b3 + 54b3 + 2 + 2 + 2 ³ 10," = " Û b = 0.5 9b 9b 9b . NĂM 2014 100 Đ Ề THI TH Ử Đ Ạ I H Ọ C 2014 MÔN TOÁN TRNGTHPTCHUYấNVNHPHC KTHITHIHCLN1NMHC201 32014 Mụn:Toỏn12.Khi D. Thigianlmbi:180phỳt(Khụngkthigiangiao) A.PHNCHUNGCHOTTCTHSINH(7,0im) Cõu. ! 2014 k 1 ! 2013 k ! = = = × " = + + × - + - 0.25 Vậytađược k 1 2014 k C a k 0,1,2, ,2013 2014 + = " = 0.25 8b ( ) ( ) 2014 2014 1 2 2014 0 2 2014 2014 2014 2014 1. Liờn(lientoancvp@vinhphuc.edu.vn)giti www.laisac.page.tl chớnhthc (thigm01trang) TRNGTHPTCHUYấNVNHPHC KTHITHIHCLN1NMHC201 32014 Mụn:Toỏn12.Khi D. Thigianlmbi:180phỳt(Khụngkthigiangiao) HNGDNCHMTHI (Vnbnnygm05trang) I)Hngdnchung: 1)Nuthớsinhlmbikhụngtheocỏchnờutrongỏpỏnnhngvnỳngthỡchosimtng phnnhthangimquynh. 2)Vicchitithoỏthangim(nucú)tronghngdnchmphimbokhụnglmsailch hngdnchmvphicthngnhtthchintrongcỏcgiỏoviờnchmthi. 3)imtonbitớnhn0,25im.Saukhicngimtonbi,ginguyờnktqu. II)ỏpỏnvthangim: Cõu