1. Trang chủ
  2. » Công Nghệ Thông Tin

XỬ LÝ ẢNH - CHƯƠNG 22 pptx

33 362 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 33
Dung lượng 439,61 KB

Nội dung

444 Ch¬ng 22 XỬ LÝ ẢNH BA CHIỀU 22.1. GIỚI THIỆU Trong các chương trước, chúng ta đã đề cập đến ảnh số hai chiều. Các ảnh đó có thể coi là có các mức xám là hàm hai biến không gian. Sự tổng quát hoá dễ hiểu nhất lên ba chiều phải được thực hiện với các ảnh có các mức xám là hàm ba biến không gian. Chúng ta gọi những ảnh này là ảnh ba chiều không gian. Một ví dụ điển hình là ảnh nhiệt độ nước đại dương như một hàm x, y và độ sâu; ảnh về mức độ ô nhiễm không khí như một hàm x, y và độ cao; và ảnh lực trọng trường như một hàm ba biến không gian ngoài. Một ví dụ có lẽ phổ biến hơn là các ảnh ba chiều các mẫu vật hiển vi trong suốt hay các đối tượng lớn hơn được quan sát bằng tia X quang. Trong các ảnh này, mức xám biểu diễn một tính chất cục bộ nào đó, chẳng hạn như mật độ quang học trên milimet chiều dài đường đi. Kinh nghiệm phổ biến nhất của con người là thế giới ảnh ba chiều mà chúng ta đang sống. Thực vậy, hầu hết các ảnh hai chiều mà chúng ta thấy đều thu nhận từ thế giới ảnh ba chiều này bằng các hệ thống camera sử dụng phép chiếu phối cảnh để rút số chiều từ ba xuống còn hai. Bằng cách mô phỏng phép chiếu, ta có thể thực hiện phép chiếu ngược lại để nghiên cứu thêm về đối tượng ba chiều tạo ra ảnh mà ta thu được. Tương tự, biết một mô tả toán học về đối tượng ba chiều, ta có thể tính toán ảnh sẽ thu được bằng một camera tại vị trí đã xác định rõ. Vì vậy, một chủ đề khác là xử lý ảnh ba chiều quan tâm đến việc mô phỏng các phép chiếu định hình ảnh và phép chiếu ngược của chúng. Trong chương này, chúng ta sẽ đưa ra năm chủ đề về xử lý ảnh ba chiều. Những chủ đề này gần giống với sự xử lý dùng phần cứng và phần mềm theo hướng xử lý ảnh số hai chiều. Về mặt cục bộ ma nói, những ứng dụng này xây dựng dựa trên các kỹ thuật đễ đề cập trong các chương trước. Ngược lại, đồ hoạ máy tính ba chiều có một sự khác nhau về tầm quan trọng của phần cứng và phần mềm. Để hiểu thêm về lĩnh vực hấp dẫn này, bạn đọc nên tham khảo tài liệu nói về vấn đề này. mục nhỏ dưới đây sẽ giới thiệu năm chủ đề đợc xem xét trong chương này. 22.1.1. Ảnh ba chiều không gian Xem xét một đối tượng ba chiều không hoàn toàn trong suốt, nhưng nó cho ánh sáng đi qua. Ta có thể coi như là một tính chất cục bộ phân bố khắp đối tượng theo ba chiều. tính chất này là mật độ quang học cục bộ. Nó có thể xác định theo đơn vị mật độ quang học trên milimet chiều dài đường đi. Ví dụ, nếu đối tượng là một tấm có tính chất đồng giống nhau cục bộ đặt theo hướng vuông góc với chùm tia tới, thì mật độ quang hoạc đo được của tấm tỷ lệ với cả gía trị của tính chất cục bộ lẫn độ dày của tấm. 445 Những mẫu vật mô sinh học mỏng có vẻ trong suốt dưới kính hiển vi. Trong chương này, chúng ta sẽ đề cập đến cách dùng kính hiển vi để thực hiện ảnh ba chiều. 22.1.2. Máy quét CAT Trong phạm vi tia X của phổ điện từ, nhiều chất, kể cả thân thể con người, đều là trong suốt. Chụp X quang trục nhờ máy tính (Computerized Axial Tomography- CAT) là kỹ thuật X quang tạo ra ảnh một đối tượng thuần nhất theo ba chiều. Kỹ thuật này được sử dụng trong chẩn đoán y học, để quan sát các cấu trúc nằm sâu bên trong cơ thể con người. Nó cũng được sử dụng trong việc kiểm tra nội soi (tạm dịch từ nondestructive-không phá huỷ), để kiểm tra có các vết nứt bên trong các bộ phận nguy hiểm hay không. NDT (Nondestructive Testing) được dùng trong các bộ phận động cơ máy bay, các thành phần không gian vũ trụ, các ống điều áp lò phản ứng hạt nhân và nhiều kim loại và các thành phần tổng hợp khác nhau đòi hỏi tính chính xác cao. Các máy quét CAT đã tạo ra một ảnh hưởng đáng kể về lĩnh vực chăm sóc sức khoẻ và NDT trong hai thập kỷ trước đây. CAT là một ngành chuyên môn đòi hỏi xử lý ảnh số cho mọi sự hiện hữu của nó: dữ liệu ghi nhận phải tải qua quá trình xử lý trực tiếp trước khi một ảnh bất kỳ được nhìn thấy. 22.1.3. Hình học không gian Khi một camera tạo thành ảnh của một cảnh ba chiều, nó cần phải loại bỏ bớt một số thông tin nào đó về cảnh đó. Những thông tin mất đi này là kết quả trực tiếp từ phép chiếu phối cảnh để giảm số chiều từ ba xuống còn hai. Ví dụ, một đặc trưngvề kích thước nào đấy trong ảnh có thể nhận được từ một đối tượng rất cách xa hay gần như nằm ngay bên cạnh. Sự nhập nhằng về khoảng cách này là kết quả của những thông tin bị mất trong khi chiếu ảnh. Khi một cảnh ba chiều được chụp bởi một cặp camera đặt tại các vị trí hơi khác nhau, sự nhập nhằng về khoảng cách có thể được giải quyết. Hai ảnh tạo ra được gọi là cặp ảnh hình học không gian. Một ảnh khoảng cách là một ảnh mà trong đó mức xám không biểu diễn độ sáng, mà là khoảng cách từ camera đến bề mặt phản xạ gây ra độ sáng điểm ảnh tương ứng của cảnh. Mỗi một điểm ảnh trong ảnh số có thể coi như phép chiếu một hình nón mảnh xuyên qua một thấu kính ảnh (hình 22-1). Trong ảnh độ sáng, mức xám của một ảnh riêng biệt cho biết lượng ánh sáng phản xạ lại bề mặt thứ nhất phân cắt bởi nón điểm ảnh (pixel cone). Trong ảnh khoảng cách, mức xám biểu diễn cho chiều dài nón điểm ảnh. Sự kết hợp một ảnh độ sáng với một ảnh khoảng cách sẽ khôi phục nhiều thông tin bị mất trong khi chiếu ảnh. Tuy nhiên, đây không phải là một miêu tả đầy đủ ảnh ban đầu, vì những bề mặt trong ảnh có thể bị mờ. Dù sao, đối với nhiều mục đích, ảnh khoảng cách cũng là có lợi cho ảnh độ sáng. Hình học không gian là kỹ thuật thu nhận một ảnh khoảng cách từ một cặp ảnh độ sáng lập thể. Từ lâu nó đã được sử dụng như kỹ thuật thủ công để tạo những bản đồ độ cao của bề mặt trái đất. Phần sau của chương này, chúng ta sẽ đề cập đến hình học không gian thực hiện nhờ máy tính. 22.1.4. Hiển thị hình học không gian Nếu có thể tính một ảnh khoảng cách từ một cặp ảnh lập thể, thì cũnh phải có khả năng tạo ra một cặp ảnh lập thể dựa vào một ảnh độ sáng và một ảnh khoảng cách đơn lẻ. Thực tế, kỹ thuật này có khả năng tạo ra sự hiển thị hình học không gian căn 446 cứ vào cảm giác về chiều sâu của người xem. Nếu một cặp ảnh hình học không gian được thể hiện cho người xem theo cách mà mỗi con mắt nhìn thấy một trong hai ảnh, thì cảm nhận hình ảnh về chiều sâu có thể gấp đôi cảm nhận từ việc quan sát ảnh ban đầu. Kỹ thuật hiển thị lập thể có thể làm tăng thông tin sẵn có nhờ hiển thị có máy tính điều khiển. 22.1.5. Hiển thị bề mặt khuất Chúng ta thường mong muốn tạo ra một ảnh phẳng hay một cặp ảnh lập thể của một đối tượng ba chiều mà chỉ tồn tại như một miêu tả toán học. Bằng phương pháp mô phỏng hệ thống ảnh, ta có thể tính ảnh số kết quả nếu đối tượng đã tồn tại và nếu nó được số hoá bởi phương tiện quy ước. Hiển thị bề mặt khuất phát sinh ra từ lĩnh vực đồ hoạ máy tính và đã phát triển nhanh chóng trong mấy năm qua. Nó được thực hiện phổ biến trên các hệ thống phần cứng được thiết kế cho việc xử lý ảnh số hai chiều và vì thế nó cũng gần đúng cho thảo luận ở đây. 22.2. ẢNH BA CHIỀU Trong phần này, ta sẽ đề cập đến những ảnh định nghĩa trong không gian ba chiều. Tính chất cục bộ (độ sáng, mật độ) được định nghĩa suốt toàn bộ phần đặc. Tổng quát từ hai chiều lên ba chiều là tuyệt đối, nhưng những yêu cầu trình bày dữ liệu trong không gian ba chiều khắt khe hơn rất nhiều. 22.2.1. Phân chia quang học Kính hiển vi quang học là công cụ được sử dụng phổ biến trong nghiên cứu mô và vi phẫu (microanatomy). Phạm trù này được xem xét bằng cấu trúc và chức năng của các mẫu vật sinh lý học theo thang tỷ lệ cực nhỏ. Tuy nhiên, các mẫu vật là ba chiều và đây là những bài toán phân tích bằng kính hiển vi quang học quy ước. Đầu tiên, chỉ những cấu trúc nằm trong hay gần mặt phẳng tiêu là có thể nhìn thấy. Hơn nữa, các cấu trúc nằm ngoài mặt phẳng tiêu cũng có thể nhìn thấy, nhưng rất mờ. Các cấu trúc càng xa mặt phẳng tiêu thì càng khó có khả năng nhìn thấy, những chúng cũng góp phần trong ảnh thu nhận. Hiệu ứng ba chiều có thể khắc phục bằng cách phân chia liên tiếp, một kỹ thuật bao gồm việc cắt mỏng mẫu vật để tạo ra một loạt các phần mỏng có thể nghiên cứu riêng lẻ để trình bày sự hiểu biết về cấu trúc ba chiều của mẫu vật. Phân chia liên tiếp có hai điều bất lợi chính: một mất mát về sự ghi nhận khi các phần trở thành tách biệt sau khi cắt mỏng và sự biến dạng hình học không thể tránh khi xử lý các lát mỏng. Xử lý bao gồm phác hoạ, uốn quăn, gập, xé lẻ các phần mỏng. Trong nhiều ứng dụng, nó rất thuận lợi cho hiển thị các mẫu vật sinh học trong không gian ba chiều. Hiển thị ba chiều quan trọng bởi vì sự thể hiện không thích hợp của các ảnh hai chiều đã dẫn đến nhiều nhận thức sai lầm về cấu trúc. Hiển thị ba chiều được tạo ra bằng cách số hoá mẫu vật với mặt phẳng tiêu đặt ở các mức khác nhau dọc theo trục quang học và sau đó xử lý từng ảnh kết quả để loại bỏ hay giảm những thông tin không liên quan từ những cấu trúc nằm trên các mặt phẳng lân cận. Trong phần này, chúng ta sẽ đưa ra ích lợi của xử lý ảnh số trong việc làm rõ các ảnh phân chia quang học và trong hiển thị ba chiều mẫu vật được phân chia. 22.2.2. Mô phỏng mẫu vật dày Hình 22-2 là sơ đồ hệ thống quang học mô phỏng ảnh hiển vi một mẫu vật có độ dày T. Hệ toạ độ ba chiều có gốc tại đáy mẫu vật và trục z trùng với trục quang học 447 của kính hiển vi. Khoảng cách từ thấu kính đến mặt phẳng ảnh d i là cố định và mặt phẳng chứa tiêu điểm nằm tại z = z’, khoảng cách d f dưới tâm thấu kính. Mặt phẳng ảnh có hệ toạ độ (x’, y’) của riêng nó với gốc toạ đọ nằm trên truc z. Tiêu cự của vật kính xác định khoảng cách d f đến mặt phẳng tiêu từ biểu thức thấu kính fdd fi 111  (1) Biểu thức này xác định độ lớn, hay hệ số phóng đại, của vật kính: f i d d M  (2) HÌNH 22-2 Hình 22-2 Mô phỏng mẫu vật dày Bởi vì khoảng cách ảnh d i và tiêu cự f là cố định, nên mặt phẳng tiêu có thể đặt bất kỳ nơi nào trong phạm vi mẫu vật đơn giản bằng cách di chuyển mẫu vật lên hay xuống. Do đó, ta có thể đặt mặt phẳng tiêu tại mức z’ nào đó mong muốn. Tiêu cự của vật kính có liên quan đến các thông số hiển vi khác theo fi fi f i dd dd d M M M d f       11 (3) và khoảng cách từ tâm thấu kính đến mặt phẳng tiêu là fd fd f M M M d d i ii f     1 (4) Với phân tích như vậy, chúng ta giả sử rằng mẫu vật đã được nhuộm thuốc nhuộm huỳnh quang và điều này tạo ra một sự phân bố ba chiều về độ sáng khắp toàn bộ mẫu vật. Phân tích mẫu vật hấp thu ánh sáng cũng tương tự. Chúng ta có thể miêu tả sự phân bố cường độ (độ sáng hay mật độ quang học) bằmg hàm f(x, y, z). Ta ký hiệu ảnh (hai chiều) nhận được khi mặt phẳng tiêu được định vị tại z’ là g’(x’, y’, z’). Các chiều quan tâm là các chiều của mẫu vật, không phải các chiều của ảnh phóng đại. Vì dù sao ta cũng sẽ xử lý ảnh số, nên sẽ thuận tiện hơn nếu ta quy tất cả các hệ 448 số tỷ lệ (khoảng cách điểm ảnh, tần số không gian,…) vào hệ toạ độ thay vì quy vào mặt phẳng ảnh. Điều này cũng đơn giản hoá ký hiệu. Ta định nghĩa một phép chiếu lý tưởng (không biến dạng) từ mặt phẳng ảnh quay ngược lại mặt phẳng tiêu. Phép chiếu này biến g’(x’, y’, z’) thành g(x, y, z’) làm mất tác dụng phóng đại và phép quay 180 0 được đưa vào bởi phép chiếu ảnh và nó đặt ảnh lên hệ toạ độ của mẫu vật. Vì thế, một điểm tại x, y, z trong mẫu vật ánh xạ thành một điểm tại x, y, z’ trong mặt phẳng tiêu. Chúng ta bỏ qua sự thay đổi độ phóng đại không đáng kể do sự phân tán tạo ra. Bây giờ chúng ta muốn tạo ra mối liên hệ giữa hàm của ảnh g(x,y,z’) và hàm của mẫu vật f(x,y,z). Hình 22-3 minh hoạ trường hợp đơn giản, khi mẫu vật có cường độ bằng 0, trừ tại mặt phẳng đối tượng tại z = z i ; tức là       11 ,,, zzyxfzyxf   (5) Điều này tương ứng với việc tạo ảnh hai chiều mà đối tượng nằm ngoài tiêu điểm một khoảng z i - z’. Vì một thấu kính phân kỳ vẫn là một hệ tuyến tính, ta có thể viết quan hệ chập       ',,,,',, 11 zzyxhzyxfzyxg  (6) trong đó h(x,y,z i -z’) là PSF của hệ thống quang học, phân kỳ một lượng z i -z’. Ta có thể mô phỏng mẫu vật ba chiều như là một sự xếp chồng các mặt phẳng đối tượng đặt tại các khoảng cách nhau  z dọc theo trục z, tức là HÌNH 22-3 Hình 22-3 Mô phỏng một mẫu vật có mặt phẳng    N i zziyxf 1 ),,( (7) trong đó z N T   (8) Chồng ảnh này có được với mặt phẳng tiêu tại z’ là tổng của các ảnh mặt phẳng riêng biệt; tức là          N i zzizyxhziyxfzyxg 1 ',,,,',, (9) 449 Nếu ta thay z = i  z và lấy giới hạn khi  z tiến đến 0 (và N tiến đến vô cùng), thì tổng trên trở thành tích phân, và biểu thức (9) trở thành         T dzzzyxhziyxfzyxg 0 ',,,,',, (10) Nếu ta biết rằng f(x,y,z) bằng 0 ngoài trường quan sát và ngoài khoảng 0  z  T, và ta chép lại toàn bộ tích chập hai chiều, ta được                 dzdydxzzyyxxhzyxfzyxg ''',',',','',, (11) Vì vậy, ảnh qua kính hiển vi của một mẫu vật dày có liên quan đến tích chập ba chiều của hàm mẫu vật và PSF. 22.2.3. Giải mờ cho ảnh mặt cắt quang học Bây giờ ta tìm một cách để loại bỏ phần phân tán trong ảnh mặt cắat quang học. Nói một cách khác, ta muốn khôi phục hàm f(x,y,z) từ một loạt các hàm ảnh g(x,y,z’) có được từ nhiều mức mặt phẳng tiêu z’ khác nhau. Mặc dù cách này gặp phải giới hạn về lý thuyết, nhưng nó là một công cụ quan trọng trong nghiên cứu sinh học, đặc biệt là trong hiển vi huỳnh quang. 22.2.3.1. Giải chập Ta có thể khôi phục hàm mẫu vật bằng giải chập ba chiều, nhưng cách này gặp phải khó khăn do các số 0 trong hàm truyền đạt. Biến đổi biểu thức (11) tạo ra quan hệ trong miền tần số       wvuHwvuFwvuG ,,,,,,  (12) Trong đó u,v và w là các biến tần số theo các chiều x, y, z tương ứng. Phổ của hàm mẫu vật là       wvuHwvuGwvuF ,,',,,,  (13) Trong đó     wvuH wvuH ,, 1 ,,'  (14) Biến đổi trở lại miền phổ ta có       zyxhzyxgzyxf ,,,,,,  (15) Viết lại toàn bộ thành phần z của tích phân chập ta được           '',,'',,,, dzzzyxhzyxgzyxf (16) trong đó z’ là một biến giả của tích phân. Nếu ta rời rạc hoá trục z bằng cách chia nó thành các khoảng cách nhau  z bằng cách đặt z = j  z, z’ = i  z và dz’ =  z, thì biểu thức (16) trở thành           i zzizjyxhziyxgziyxf ,,',,,, (17) 450 Khi mặt phẳng tiêu di chuyển ra khỏi mẫu vật (i < 0 hay i > N), thì nội dung thông tin có trong ảnh được tạo ra có phần ít hơn (chỉ trừ tại tần số thấp, sẽ nói sau). Vì vậy, ta có thể ước lượng biểu thức (17) bằng tổng hữu hạn           MN Mi zzizjyxhziyxgziyxf ,,',,,, (18) trong đó M là một số nguyên dương. Việc này làm cho sự khôi phục của mỗi mặt đối tượng trở thành một tổng hữu hạn các tích chập hai chiều. Mặc dù sự giải chập ba chiều có thể dẫn đến sự khôi phục hàm mẫu vật f(x,y,z), nó cũng gặp rất nhiều khó khăn. Trước tiên, tính toán phổ của PSF ba chiều là rất phức tạp. Thứ hai, cần phải tính h’(x,y,z), phép chuyển đổi ba chiều ngược của biểu thức (14). Cuối cùng, biểu thức (18) cũng cần phải tính toán rất lớn, đặc biệt là khi  z là nhỏ và nếu N + 2M phải lớn để bao được mẫu vật. 22.2.3.2. Các biểu thức đồng thời Để tiếp cận theo cách thứ hai, ta hãy ước lượng mẫu vật một lần nữa bằng một chồng các mặt phẳng đối tượng tách biệt nhau một khoảng  z dọc theo trục z. Ta tạo ra một loạt các ảnh mặt cắt quang học bằng cách số hoá mẫu vật khi di chuyển mặt phẳng tiêu theo trục z từng đoạn  z. Ta thay z’=jz i  j  N dz = z (19) và có được ảnh mặt cắt thứ j từ biểu thức (9); đó là          N i zzizjyxhziyxfziyxg 1 ,,,,,, (20) trong đó h(x,y,z) được giả thiết là gần đối xứng trên z. Ta có thể đơn giản các ký hiệu bằng cách tạm thời bỏ x, y và  z xem như đã biết và viết i, j như là chỉ số dưới. Với cách viết này biểu thức (20) trở thành        jN ji iji N i jiij hfhfg 11 (21) Điều này nói lên rằng ảnh mặt cắt thứ j là tổng của các tích chập của nhiều mặt phẳng mẫu vật khác nhau với các PSF phân kỳ thích hợp. (Nhớ rằng (i - j)  z là khoảng cách phân kỳ) Chúng ta có thể đơn giản hoá hơn nữa bằng cách biến đổi Fourier hai chiều biểu thức (21). Việc này đưa ta từ miền phổ sang miền tần số, trong đó tích chập tương ứng với phép nhân. Bằng cách định nghĩa             zjyxhHzjyxfFzjyxgG iij  ,,,,,, ' (22) Và biểu thức (21 ) trở thành      jN ji ijij HFG 1 (23) Cho một tập các ảnh mặt cắt quang học, G j , với i  j  N, biểu thức (23) biểu diễn một tập N biểu thức tuyến tính đồng thời trong N chưa biết. Vậy chúng ta có khả năng thứ hai để khôi phục hàm mẫu vật f (x,y,z); có thể dùng quy tắc Cramer hay các cách khác để giải hệ phương trình (23) với các ẩn F j . Tuy nhiên, mức độ tính toán 451 trong trường hợp này, thật là kinh khủng. Thực tế, F j , G j , và H j là hàm hai chiều của tần số. Do đó, hệ phương trình phải được giải với mỗi điểm mẫu trong miền tần số (hai chiều). Mặc dù có thể làm được (miễn là tồn tại một nghiệm) nhưng câu hỏi đặt ra là liệu kết quả đạt được có xứng với chi phí tính toán hay không. 22.2.3.3. Một phương pháp xấp xỉ Thay vì giải một cách chính xác để có được hàm mẫu vật hoàn chỉnh, phương pháp xấp xỉ mang tính thực tế hơn và cải thiện đáng kể tình hình với một chi phí hợp lý. Bây giờ ta bỏ các ký hiệu theo cách giải chính xác (và do đó đồng thời) để tìm một cách khác đơn giản hơn nhưng hiệu quả. Hãy loại bỏ tất cả các số hạng có i = 0 trong biểu thức (21), còn lại hai tổng, một cho i dương và một cho i âm. Ta có         jN i iji ji ijijj hfhfhfg 1 1 1 0 (24) Có thể sắp xếp lại như sau         jN i iji ji ijijj hfhfghf 1 1 1 0 (25) Trong đó h 0 là PSF trong tiêu điểm (in-focus) của kính hiển vi. Biểu thức này cho thấy rằng mẫu vật tại mức j, nhân chập với PSF trong tiêu điểm, được cho bởi ảnh tại mức j trừ đi tổng của các mặt phẳng đối tượng liền kề mà đã được làm mờ đi bởi h i PSF ngoài tiêu điểm(out of fucus). Trong tổng này, i biểu diễn khoảng cách giữa mặt phẳng tiêu và mặt đối tượng. Biểu thức (25 ) cũng chỉ ra rằng ta có thể tái tạo lại mẫu vật tại mức j bằng cách trừ đi từ ảnh mức j, một dãy các mặt mẫu vật lân cận làm mờ bởi hàm truyền đạt phân kỳ. Ta chưa có các mặt mẫu vật lân cận f i+j , nhưng chúng ta lại có ảnh mặt lân cận g i+j. Ta thấy từ biểu thức (24) rằng mỗi ảnh chứa mặt phẳng mẫu vật tương ứng với một tổng các mặt mẫu vật liền kề phân kỳ. Do hàm truyền đạt phân kỳ có xu hướng phân biệt những tần số phổ cao (chi tiết nhỏ), nhưng lại cho qua các thông tin tần số thấp, nên ta có thể phát biểu tổng quát là phổ ảnh G j bao gồm phổ mẫu vật F j và thông tin tần số thấp dư thừa từ các mặt phẳng liền kề. Mặt càng ở xa thì thông tin trong vùng tần số trung bình càng ít tập trung, nhưng chính sự những tần số thấp nhất lại tích luỹ, trong ảnh , từ tất cả các mặt phẳng. Chúng ta có thể xấp xỉ hoá mẫu vật f i bằng một bản sao đã lọc thông cao của ảnh g i ; tức là, 0 kgf jj  (26) trong đó k0 là một bộ lọc thông cao nào đó được xác định heuristic bằng một hàm truyền đạt nhận giá trị 0 tại tần số 0 và 1 tại các tần số cao đang quan tâm. Điều này sẽ loại bỏ một lượng lớn những thông tin tần số thấp dư thừa và tạo sự xấp xỉ hợp lý. Hơn nữa, nếu chúng ta bỏ quả hiệu quả làm mờ của PSF trong tiêu điểm, chúng ta có thể viết biểu thức gần đúng với biểu thức (25) như sau         jN i iji ji ijijj hkghkggf 1 0 1 1 0 (27) 452 Có thể nó chỉ cần sử dụng một lượng M nhỏ các mặt phẳng liền kề để loại bỏ hầu hết những thông tin phân kỳ phiền toái. Khi đó biểu thức (27) trở thành       M i iijiijj j j khghggff 1 0 (28) Biểu thức này gợi ý rừng chúng ta có thể loại bỏ từng phần các cấu trúc phân kỳ bằng cách trừ 2M ảnh mặt phẳng liền kề mà đã được nhân chập với PSF phân kỳ thích hợp và một bộ lọc thông cao k 0 . Bộ lọc và số lượng M mặt phẳng liền kề phải được lựa chọn để cho kết quả hợp lý. Trong khi chúng ta không thể mong đợi kỹ thuật này khôi phục chính xác hàm mẫu vật, thì nó lại cải tiến các ảnh mặt cắt quang học với chi phí khiêm tốn nhất. Hình 22-4 minh hoạ các kết quả thuật toán giải mờ đơn giản đề cập ở trên đối với các mặt cắt quang học. Thuật giải này chỉ có hai ảnh mặt phẳng liền kề (M = 1) và là   111 25 hgggf jjj j    (29) Trong đó h 1 là một PSF mà xấp xỉ hàm làm mờ do phân kỳ một lượng  z. Hình 22-4(a) đến (c) đưa ra ba ảnh mặt cắt quang học đã số hoá của một tế bào Golgi nằm ngang đã nhuộm (thấm muối bạc) trong võng mạc cá trê (  z =  ). Các ảnh mặt phẳng thấp hơn và cao hơn ảnh mờ xuất hiện trong hình 22-4(d) và (f). Kết quả của quá trình giải mờ hình 22-4(b) cho trong hình 22-4(e). Lưu ý rằng các cấu trúc chỉ xuất hiện trong hình 22-4(d) được đảo ngược hoàn toàn độ tương phản, trong khi các cấu trúc phân kỳ từ các mặt phẳng liền kề bị loại bỏ. Các cấu trúc nhìn thấy trong cả ba mặt phẳng đều bị mất một sự tương phản nào đấy bởi vì thông tin tần số thấp dư thừa không bị loại bỏ từ các ảnh mặt phẳng liền kề (chẳng hạn, biểu thức (26) không được sử dụng). Những mở rộng của kỹ thuật này đã biến thành công dụng phổ biến và sẵn có trên một vài hệ thống thương mại. Thuận lợi chính của chúng là chúng cải thiện đáng kể các ảnh ba chiều mà chỉ cần thời gian xử lý chừng một giây. HÌNH 22-4 Hình 22-4 Giải mờ các mặt cắt quang học: (a), (b), (c) các ảnh mặt cắt quang học đã số hoá; (d), (f) các ảnh mặt phẳng liền kề bị mờ; (e) ảnh đã giải mờ 22.2.3.4. Giải chập lặp có ràng buộc Vấn đề tái tạo ba chiều có thể được tiếp cận theo một cách khác nữa: tái tạo lặp đi lặp lại một hàm tổng hợp mà, khi làm mờ bằng PSF, cho ta một ảnh gần giỗng ảnh đã 453 thu nhận. Sự hội tụ của kỹ thuật được cải tiến nếu một hay nhiều ràng buộc được lợi dụng để giải quyết. Các ràng buộc phổ biến nhất là hàm mẫu vật phải không âm. Ở đây, chúng ta không còn có một hệ thống tuyến tính nữa và sự tuân theo các ràng buộc trên có khả năng dẫn đến độ phân giải vượt quá giới hạn nhiễu xạ (xen lại phần 16.3). Xuất phát từ một xấp xỉ khởi đầu,   zyxf ,, 0  , sai số còn lại sau lần lặp thứ i là         zyxhzyxfzyxgzyxe ii ,,,,,,,,   (30) trong đó   zyxf i ,,  là xấp xỉ thứ i của hàm mẫu vật, g(x, y, z) là ảnh thu nhận được và h(x, y, z) là PSF ba chiều (đã biết). Sau mỗi bước lặp, sự đánh giá được cập nhật bởi một quá trình nào đó dựa trên cơ sở hàm sai số. Ví dụ, một sự hiệu chỉnh thêm vào là       zyxzyxfzyxf ii ,,,,,, 11       (31) trong đó   zyx i ,, 1  là lượng cập nhật. Sau đó sử dụng các ràng buộc. Trong trường hợp này,   0,, 1    zyxf i (32) là một giới hạn gần đúng đối với đánh giá của hàm mẫu vật. Agard, người khác đã sử dụng       zyxezyxzyx ii ,,,,,, 1    (33) để cập nhật, trong đó       2 2 ,,,, 1,, A Azyxhzyxf zyx i i           (34) là một hàm tỷ lệ và A là hằng số. Tuy nhiên, các kết quả hội tụ nhanh hơn khi sử dụng một bản sao của e i đã lọc thông cao đối với việc cập nhật trong biểu thức (33). Chúng ta có thể thấy tại sao điều này đúng bằng cách chuyển sang mìên tần số và thiết lập sai số sau lần lặp thứ i + 1 về 0. Ta có           0,,,,,,,,,, 11            wvuHwvuwvuFwvuGwvuE i i i (35) biểu thức này có thể giải theo       wvuH wvuE wvu i i ,, ,, ,, 1   (36) Đây chỉ là một bản sao đã giải chập của hàm sai số còn lại của bước trước đó. Dĩ nhiên, quá trình giải chập hàm sai số không dễ dàng hơn việc giải bài toán ban đầu. Nhưng kết quả chỉ ra rằng cách sử dụng lọc thông cao đúng đắn, có thể xấp xỉ giải chập yêu cầu, sẽ giảm số lần hiệu chỉnh cần phải được áp dụng. [...]... mặt có sắc thái là một kỹ thuật được dùng để tạo ra một ảnh vật ba chiều mà chỉ tồn tại trong mô tả toán học Mặc dù điều này thường làm người ta nghĩ đến ảnh máy tính, nó cần phải có hệ thống hiển thị ảnh số Vì vậy, chúng ta nói đến vấn đề có liên quan đó ở đây HÌNH 2 2-2 0 Hình 2 2-2 0 Hình ảnh chiếu chồng ảnh HÌNH 2 2-2 1 Hình 2 2-2 1 Phép chiếu của một ảnh lưới Đối tương quan tâm được cho bởi một mô tả toán... kỳ không gian mẫu vật HÌNH 2 2-7 Hình 2 2-7 Tác động của sự phân kỳ lên PSF và OTF: (a) trong tiêu điểm; (b) phân kỳ 1/4 sóng; (c) phân kỳ 3/4 sóng BẢNG 2 2-1 TÍNH TOÁN CHO VÍ DỤ PHÂN KỲ CỦA KÍNH HIỂN VI BẢNG 2 2-1 HÌNH 2 2-8 Hình 2 2-8 Sai số độ dài đường đi phân kỳ và khoảng cách phân kỳ trong không gian mẫu vật, các công thức chính xác và xấp xỉ (vật kính 100, 1.2 NA) 459 22. 2.5.3 Độ sâu của tiêu điểm... giống nhau Vì một vật thể được dịch trái trong một ảnh của mắt phải, điểm xuất hiện của nó chuyển đến gần với người quan sát hơn Kỹ thuật ảnh nổi là kỹ thuật dùng camera có nguyên tắc như trong hình 2 2-1 3 và có cấu tạo như trong hình 2 2-1 7 để tái tạo lại cảnh ba chiều Giả sử rằng hai camera trong hình 2 2-1 3 tạo ra các ảnh trong suốt dương tại mặt ảnh Các ảnh trong suốt này có thể được xoay 1800 quanh trục... và miền Các ảnh mặt cắt được chiếu lên một màn ảnh tưởng tượng, trong đó chúng được đặt chồng bởi phép cộng Phép chiếu được hoàn thành bằng một phép biến đổi hình học và được mô tả trong hình 2 2-2 1 Một ảnh lưới do máy tính sinh ra được chiếu với góc 600, độ nâng 450 Hình 2 2-2 2 biểu diễn hai cặp ảnh ba chiều, mỗi một ảnh được chiếu bằng cách chiếu các ảnh tế bào võng mạc với hai điểm nhìn 22. 6 HIỂN THỊ... (81) và trong đó l là toạ độ nâng và giống nhau đối với cả hai camera HÌNH 2 2-1 5 Hình 2 2-1 5 Camera quét góc hình học không gian Hình 2 2-1 6 cho thấy một cặp ảnh lập thể từ tàu đổ bộ Viking Hình học không gian đã được sử dụng trong trường quan sát gần để thiết lập một tập các đường lưới trên bề mặt 467 HÌNH 2 2-1 6 Hình 2 2-1 6 Cặp ảnh lập thể thu được từ camera của tàu đổ bộ Viking Các hệ thống camera hình... Hãy phát triển một chương trình để tính ảnh miền chuẩn từ ảnh độ dịch chuyển, cho biết ảnh hình học 3 Hãy phát triển một chương trình để tính ảnh có miền thực sự từ ảnh độ dịch chuyển, cho biết ảnh hình học 4 Hãy phát triển một chương trình để xác định ảnh hình học cho một hệ camera ba chiều, cho toạ độ các điểm ảnh và khoảng của các điểm chia trong không gian 5 Hãy phát triển một chương trình để tạo... của ảnh được mô tả trong hình 2 2-1 8 Ảnh mắt phải được tạo ra bằng cách sao chép mức xám tại toạ độ xl vào điểm ảnh xr Tại mỗi điểm (xi,,y), khoảng cách dịch chuyển là tỉ lệ nghịch với khoảng cách HÌNH 2 2-1 8 469 Hình 2 2-1 8 Sự biến đổi dịch chuyển điểm ảnh Ta mong muốn rằng xr là một hàm không giảm của xl Nếu hàm này có chiều dốc âm trong một khoảng nào đó, nó sẽ tạo ra sự đảo từ trái sang phải trong ảnh. .. nguồn sáng và 471 camera tưởng tượng để tạo ra ảnh Vị trí camera được gọi là điểm nhìn Thuật toán hiển thị sẽ tính toán ảnh mà camera tạo ra HÌNH 2 2-2 2 Hình 2 2-2 2 Cặp ảnh lập thể của ảnh xếp chồng Hiển thị bề mặt cần phải mô hình hoá ba thứ: mô tả phổ của bề mặt, hiện tượng phản xạ ánh sáng tại bề mặt, và biểu diễn hình học của nguồn sáng và điểm chiếu 22. 6.1 Mô tả bề mặt Mặt ba chiều của các vật thể... Hình học biểu diễn Hình 2 2-1 7 biểu diễn hình học đối với biểu diễn lập thể Cặp ảnh lập thể được đặt cách một khoảng D đến mắt người, khoảng cách giữa hai mắt là S Các điểm tại toạ độ xl, yl trên ảnh trái và xr, yl trên ảnh phải sẽ tạo cảm giác cho mắt người như là nhìn thấy một điểm tại P HÌNH 2 2-1 7 Hình 2 2-1 7 Hiển thị lập thể Một sự biến đổi hình học tương tự như với hình 2 2-1 3 tạo ra một quan hệ z... xác 22. 6.2 Hiện tượng phản xạ bề mặt Hình 2 2-2 4 minh hoạ sự phản xạ ánh sáng từ một mặt phẳng Một nguồn điểm có khoảng cách r chiếu một tia sáng tạo một góc  so với pháp tuyến của mặt Một camera được đặt trên một đường tạo một góc  với pháp tuyến Cường độ sáng trên mặt là tỷ lệ với cos()/r2 HÌNH 2 2-2 3 472 Hình 2 2-2 3 (a) Hiển thị đồ hoạ (khung lưới); (b) hiển thị bề mặt có sắc thái HÌNH 2 2-2 4 Hình 2 2-2 4 . kể các ảnh ba chiều mà chỉ cần thời gian xử lý chừng một giây. HÌNH 2 2-4 Hình 2 2-4 Giải mờ các mặt cắt quang học: (a), (b), (c) các ảnh mặt cắt quang học đã số hoá; (d), (f) các ảnh mặt phẳng. ảnh mờ xuất hiện trong hình 2 2-4 (d) và (f). Kết quả của quá trình giải mờ hình 2 2-4 (b) cho trong hình 2 2-4 (e). Lưu ý rằng các cấu trúc chỉ xuất hiện trong hình 2 2-4 (d) được đảo ngược hoàn toàn. 444 Ch¬ng 22 XỬ LÝ ẢNH BA CHIỀU 22. 1. GIỚI THIỆU Trong các chương trước, chúng ta đã đề cập đến ảnh số hai chiều. Các ảnh đó có thể coi là có các mức xám là

Ngày đăng: 22/07/2014, 21:23

HÌNH ẢNH LIÊN QUAN

Hình 22-5 minh hoạ kết quả của sự phân kỳ trên OTF. Các đường cong được tính  từ biểu thức (49) cho giá trị phân kỳ  w  nào  đó - XỬ LÝ ẢNH - CHƯƠNG 22 pptx
Hình 22 5 minh hoạ kết quả của sự phân kỳ trên OTF. Các đường cong được tính từ biểu thức (49) cho giá trị phân kỳ w nào đó (Trang 13)
Hình 22-5  OTF phân kỳ - XỬ LÝ ẢNH - CHƯƠNG 22 pptx
Hình 22 5 OTF phân kỳ (Trang 14)
Hình 22-13 là biểu đồ cấu hình một camera kép thích hợp cho việc thu nhận ảnh  lập thể - XỬ LÝ ẢNH - CHƯƠNG 22 pptx
Hình 22 13 là biểu đồ cấu hình một camera kép thích hợp cho việc thu nhận ảnh lập thể (Trang 21)

TỪ KHÓA LIÊN QUAN

w