1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ THI THỬ ĐH -TOÁN 2010 _4

6 176 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 390,5 KB

Nội dung

TRUNG TÂM LUYỆN THI ĐH (Đề số 4) ĐỀ THI THỬ ĐẠI HỌC MÔN: TOÁN Thời gian làm bài: 180 phút. A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH: ( 7 điểm) Câu I (2 điểm) Cho hàm số ( ) 3 2 ( ) 3 1 1y f x mx mx m x = = + − − − , m là tham số 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số trên khi m = 1. 2. Xác định các giá trị của m để hàm số ( )y f x= không có cực trị. Câu II (2 điểm): Giải phương trình : 1). ( ) 4 4 sin cos 1 tan cot sin 2 2 x x x x x + = + ; 2). ( ) ( ) 2 3 4 8 2 log 1 2 log 4 log 4x x x+ + = − + + Câu III (1 điểm) Tính tích phân 3 2 2 1 2 1 dx A x x = − ∫ Câu IV (1 điểm) Cho hình nón có đỉnh S, đáy là đường tròn tâm O, SA và SB là hai đường sinh, biết SO = 3, khoảng cách từ O đến mặt phẳng SAB bằng 1, diện tích tam giác SAB bằng 18. Tính thể tích và diện tích xung quanh của hình nón đã cho. Câu V (1 điểm) Tìm m để hệ bất phương trình sau có nghiệm ( ) 2 2 7 6 0 2 1 3 0 x x x m x m − + ≤ − + − + ≥      B.PHẦN RIÊNG (3 điểm): Thí sinh chỉ làm một trong hai phần (Phần 1 hoặc phần 2) 1. Theo chương trình chuẩn. Câu VI.a (2 điểm) 1. Cho tam giác ABC biết các cạnh AB, BC lần lượt là 4x + 3y – 4 = 0; x – y – 1 = 0. Phân giác trong của góc A nằm trên đ.thẳng x + 2y – 6 = 0. Tìm tọa độ các đỉnh của tam giác ABC. 2. Cho hai mặt phẳng ( ) ( ) : 2 2z + 5 = 0; Q : 2 2z -13 = 0.P x y x y+ − + − Viết phương trình của mặt cầu (S) đi qua gốc tọa độ O, qua điểm A(5;2;1) và tiếp xúc với cả hai m.phẳng (P) và (Q). Câu VII.a (1 điểm) Tìm số nguyên dương n thỏa mãn các điều kiện sau: 4 3 2 1 1 2 4 3 1 1 5 4 7 15 n n n n n n C C A C A − − − − + +  − <     ≥   (Ở đây , k k n n A C lần lượt là số chỉnh hợp và số tổ hợp chập k của n phần tử) 2. Theo chương trình nâng cao. Câu VI.b (2 điểm) 1. Cho đường thẳng d: x – 5y – 2 = 0 và đường tròn (C): 2 2 2 4 8 0x y x y+ + − − = .Xác định tọa độ các giao điểm A, B của đường tròn (C) và đường thẳng d (điểm A có hoành độ dương). Tìm tọa độ C thuộc đường tròn (C) sao cho tam giác ABC vuông ở B. 2. Cho mặt phẳng (P): 2 2 1 0x y z− + − = và các đường thẳng: 1 2 1 3 5 5 : ; : 2 3 2 6 4 5 x y z x y z d d − − − + = = = = − − . Tìm các điểm 1 2 d , dM N∈ ∈ sao cho MN // (P) và cách (P) một khoảng bằng 2. Câu VII.b: Tính đạo hàm f’(x) của hsố ( ) 3 1 ( ) ln 3 f x x = − và giải bpt: 2 0 6 sin 2 '( ) 2 t dt f x x π π > + ∫ Đáp án(ĐỀ 4) Câu Ý Nội dung Điểm 2 1,00 + Khi m = 0 1y x⇒ = − , nên hàm số không có cực trị. 0,25 + Khi 0m ≠ ( ) 2 ' 3 6 1y mx mx m⇒ = + − − Hàm số không có cực trị khi và chỉ khi ' 0y = không có nghiệm hoặc có nghiệm kép 0,50 ( ) 2 2 ' 9 3 1 12 3 0m m m m m⇔ ∆ = + − = − ≤ 1 0 4 m⇔ ≤ ≤ 0,25 1 1,00 ( ) 4 4 sin cos 1 tan cot sin 2 2 x x x x x + = + (1) Điều kiện: sin 2 0x ≠ 0,25 2 1 1 sin 2 1 sin cos 2 (1) sin 2 2 cos sin x x x x x x −   ⇔ = +  ÷   0,25 2 2 1 1 sin 2 1 1 2 1 sin 2 1 sin 2 0 sin 2 sin 2 2 x x x x x − ⇔ = ⇔ − = ⇔ = Vậy phương trình đã cho vô nghiệm. 0,50 2 1,00 ( ) ( ) 2 3 4 8 2 log 1 2 log 4 log 4x x x+ + = − + + (2) Điều kiện: 1 0 4 4 4 0 1 4 0 x x x x x + ≠  − < <   − > ⇔   ≠ −   + >  0,25 ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 (2) log 1 2 log 4 log 4 log 1 2 log 16 log 4 1 log 16 4 1 16 x x x x x x x x x ⇔ + + = − + + ⇔ + + = − ⇔ + = − ⇔ + = − 0,25 + Với 1 4x− < < ta có phương trình 2 4 12 0 (3)x x+ − = ; ( ) 2 (3) 6 x x =  ⇔  = −  lo¹i 0,25 + Với 4 1x− < < − ta có phương trình 2 4 20 0x x− − = (4); ( ) ( ) 2 24 4 2 24 x x  = − ⇔  = +   lo¹i Vậy phương trình đã cho có hai nghiệm là 2x = hoặc ( ) 2 1 6x = − 0,25 III 1,00 Đặt 2 2 2 2 1 1 2 2 dx tdt t x t x tdt xdx x x = − ⇒ = − ⇒ = − ⇒ = − 2 2 1 1 dx tdt tdt x t t ⇒ = − = − − + Đổi cận: 1 3 2 2 3 1 2 2 x t x t = ⇒ = = ⇒ = 0,50 1 3 3 2 2 2 1 2 2 1 2 3 2 2 1 1 1 7 4 3 ln ln 1 1 2 1 2 3 | dt dt t A t t t   + + = = = =  ÷  ÷ − − −   ∫ ∫ 0,50 IV 1,00 Gọi E là trung điểm của AB, ta có: ,OE AB SE AB⊥ ⊥ , suy ra ( ) SOE AB⊥ . Dựng ( ) OH SE OH SAB⊥ ⇒ ⊥ , vậy OH là khoảng cách từ O đến (SAB), theo giả thiết thì OH = 1. Tam giác SOE vuông tại O, OH là đường cao, ta có: 2 2 2 2 2 2 2 1 1 1 1 1 1 1 8 1 9 9 9 3 8 2 2 OH SO OE OE OH SO OE OE = + ⇒ = − = − = ⇒ = ⇒ = 2 2 2 9 81 9 9 8 8 2 2 SE OE SO SE= + = + = ⇒ = 0,25 2 1 36 . 8 2 9 2 2 2 SAB SAB S S AB SE AB SE = ⇔ = = = ( ) 2 2 2 2 2 2 1 9 9 265 4 2 32 2 8 8 8 OA AE OE AB OE   = + = + = + = + =  ÷   0,25 Thể tích hình nón đã cho: 2 1 1 265 265 . . .3 3 3 8 8 V OA SO π π π = = = 0,25 Diện tích xung quanh của hình nón đã cho: 2 2 2 265 337 337 9 8 8 8 265 337 89305 . . . 8 8 8 xq SA SO OA SA S OA SA π π π = + = + = ⇒ = = = = 0,25 V 1,00 Hệ bất phương trình ( ) 2 2 7 6 0 (1) 2 1 3 0 (2) x x x m x m  − + ≤   − + − + ≥   ( ) 1 1 6x⇔ ≤ ≤ . Hệ đã cho có nghiệm khi và chỉ khi tồn tại [ ] 0 1;6x ∈ thỏa mãn (2). 0,25 ( ) ( ) ( ) [ ] 2 2 2 3 2 2 3 2 1 ( 1;6 2 1 0) 2 1 x x x x x m m do x x x − + ⇔ − + ≥ + ⇔ ≥ ∈ ⇒ + > + Gọi [ ] 2 2 3 ( ) ; 1;6 2 1 x x f x x x − + = ∈ + 0,25 Hệ đã cho có nghiệm [ ] 0 0 1;6 : ( )x f x m⇔ ∃ ∈ ≥ ( ) ( ) ( ) ( ) 2 2 2 2 2 4 2 2 8 ' 2 1 2 1 x x x x f x x x + − + − = = + + ; ( ) 2 1 17 ' 0 4 0 2 f x x x x − ± = ⇔ + − = ⇔ = Vì [ ] 1;6x ∈ nên chỉ nhận 1 17 2 x − + = 0,25 Ta có: 2 27 1 17 3 17 (1) , (6) , 3 13 2 2 f f f   − + − + = = =  ÷  ÷   Vì f liên tục và có đạo hàm trên [1;6] nên 27 max ( ) 13 f x = Do đó [ ] [ ] 0 0 1;6 27 1;6 : ( ) max ( ) 13 x x f x m f x m m ∈ ∃ ∈ ≥ ⇔ ≥ ⇔ ≥ 0,25 VIa 2,00 1 1,00 Tọa độ của A nghiệm đúng hệ phương trình: ( ) 4 3 4 0 2 2;4 2 6 0 4 x y x A x y y + − = = −   ⇔ ⇒ −   + − = =   0,25 Tọa độ của B nghiệm đúng hệ phương trình ( ) 4 3 4 0 1 1;0 1 0 0 x y x B x y y + − = =   ⇔ ⇒   − − = =   0,25 Đường thẳng AC đi qua điểm A(-2;4) nên phương trình có dạng: ( ) ( ) 2 4 0 2 4 0a x b y ax by a b+ + − = ⇔ + + − = Gọi 1 2 3 : 4 3 4 0; : 2 6 0; : 2 4 0x y x y ax by a b∆ + − = ∆ + − = ∆ + + − = Từ giả thiết suy ra ( ) · ( ) · 2 3 1 2 ; ;∆ ∆ = ∆ ∆ . Do đó ( ) · ( ) · ( ) 2 3 1 2 2 2 2 2 |1. 2. | | 4.1 2.3 | cos ; cos ; 25. 5 5. 0 | 2 | 2 3 4 0 3 4 0 a b a b a a b a b a a b a b + + ∆ ∆ = ∆ ∆ ⇔ = + =  ⇔ + = + ⇔ − = ⇔  − =  + a = 0 0b⇒ ≠ . Do đó 3 : 4 0y∆ − = 0,25 + 3a – 4b = 0: Có thể cho a = 4 thì b = 3. Suy ra 3 : 4 3 4 0x y∆ + − = (trùng với 1 ∆ ). Do vậy, phương trình của đường thẳng AC là y - 4 = 0. Tọa độ của C nghiệm đúng hệ phương trình: ( ) 4 0 5 5;4 1 0 4 y x C x y y − = =   ⇔ ⇒   − − = =   0,25 2 1,00 Gọi I(a;b;c) là tâm và R là bán kính của mặt cầu (S). Từ giả thiết ta có: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , OI AI OI AI d I P d I Q OI d I P d I P d I Q  =   = = = ⇔ =   =   0,25 Ta có: ( ) ( ) ( ) 2 2 2 2 2 2 2 2 5 2 1 10 4 2 30 (1) OI AI OI AI a b c a b c a b c = ⇔ = ⇔ + + = − + − + − ⇔ + + = ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 | 2 2 5 | , 9 2 2 5 (2) 3 a b c OI d I P a b c a b c a b c + − + = ⇔ + + = ⇔ + + = + − + ( ) ( ) ( ) ( ) | 2 2 5| | 2 2 13 | , , 3 3 2 2 5 2 2 13 ( ) 2 2 4 (3) 2 2 5 2 2 13 a b c a b c d I P d I Q a b c a b c a b c a b c a b c + − + + − − = ⇔ = + − + = + − −  ⇔ ⇔ + − =  + − + = − − + +  lo¹i Từ (1) và (3) suy ra: 17 11 11 4a ; (4) 3 6 3 a b c − = − = 0,25 Từ (2) và (3) suy ra: 2 2 2 9 (5)a b c+ + = Thế (4) vào (5) và thu gọn ta được: ( ) ( ) 2 221 658 0a a− − = Như vậy 2a = hoặc 658 221 a = .Suy ra: I(2;2;1) và R = 3 hoặc 658 46 67 ; ; 221 221 221 I   −  ÷   và R = 3. 0,25 Vậy có hai mặt cầu thỏa mãn yêu cầu với phương trình lần lượt là: ( ) ( ) ( ) 2 2 2 2 2 1 9x y z− + − + − = và 2 2 2 658 46 67 9 221 221 221 x y z       − + − + + =  ÷  ÷  ÷       0,25 VIIa 1,00 Điều kiện: 1 4 5n n − ≥ ⇔ ≥ Hệ điều kiện ban đầu tương đương: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 3 4 1 2 3 5 2 3 4.3.2.1 3.2.1 4 1 1 2 3 7 1 1 5.4.3.2.1 15 n n n n n n n n n n n n n n n n n − − − − − − −  − < − −   ⇔  + − − −  ≥ + −   0,50 2 2 9 22 0 5 50 0 10 5 n n n n n n  − − <  ⇔ − − ≥ ⇔ =   ≥  0,50 VIb 2,00 1 1,00 Tọa độ giao điểm A, B là nghiệm của hệ phương trình 2 2 0; 2 2 4 8 0 1; 3 5 2 0 y x x y x y y x x y = =  + + − − =  ⇔   = − = − − − =   0,50 Vì A có hoành độ dương nên ta được A(2;0), B(-3;-1). Vì · 0 90ABC = nên AC là đường kính đường tròn, tức là điểm C đối xứng với điểm A qua tâm I của đường tròn. Tâm I(-1;2), suy ra C(-4;4). 0,50 2 1,00 Phương trình tham số của d 1 là: 1 2 3 3 2 x t y t z t = +   = −   =  . M thuộc d 1 nên tọa độ của M ( ) 1 2 ;3 3 ;2t t t+ − . Theo đề: ( ) ( ) ( ) ( ) 1 2 2 2 2 |1 2 2 3 3 4 1| |12 6 | , 2 2 12 6 6 1, 0. 3 1 2 2 t t t t d M P t t t + − − + − − = = ⇔ = ⇔ − = ± ⇔ = = + − + 0,25 + Với t 1 = 1 ta được ( ) 1 3;0;2M ; + Với t 2 = 0 ta được ( ) 2 1;3;0M 0,25 + Ứng với M 1 , điểm N 1 2 d∈ cần tìm phải là giao của d 2 với mp qua M 1 và // mp (P), gọi mp này là (Q 1 ). PT (Q 1 ) là: ( ) ( ) 3 2 2 2 0 2 2 7 0 (1)x y z x y z− − + − = ⇔ − + − = . Phương trình tham số của d 2 là: 5 6 4 5 5 x t y t z t = +   =   = − −  (2) Thay (2) vào (1), ta được: -12t – 12 = 0 ⇔ t = -1. Điểm N 1 cần tìm là N 1 (-1;-4;0). 0,25 + Ứng với M 2 , tương tự tìm được N 2 (5;0;-5). 0,25 VIIb 1,00 Điều kiện ( ) 3 1 0 3 3 x x > ⇔ < − ( ) ( ) ( ) 3 1 ( ) ln ln1 3ln 3 3ln 3 3 f x x x x = = − − = − − − ; ( ) ( ) 1 3 '( ) 3 3 ' 3 3 f x x x x = − − = − − 0,25 Ta có: ( ) ( ) ( ) 2 0 0 0 6 6 1 cos 3 3 sin sin sin 0 sin 0 3 2 2 | t t dt dt t t π π π π π π π π π − = = − = − − − =    ∫ ∫ 0,25 Khi đó: 2 0 6 sin 2 '( ) 2 t dt f x x π π > + ∫ ( ) ( ) 2 1 3 3 2 0 3 2 3 2 1 3 3; 2 3; 2 2 x x x x x x x x x x x −  < −   < >    − + ⇔ ⇔ ⇔ − +    < <   < ≠ − < ≠ −    0,50 . TRUNG TÂM LUYỆN THI ĐH (Đề số 4) ĐỀ THI THỬ ĐẠI HỌC MÔN: TOÁN Thời gian làm bài: 180 phút. A. PHẦN CHUNG CHO TẤT CẢ CÁC THÍ. = Vậy phương trình đã cho vô nghiệm. 0,50 2 1,00 ( ) ( ) 2 3 4 8 2 log 1 2 log 4 log 4x x x+ + = − + + (2) Điều kiện: 1 0 4 4 4 0 1 4 0 x x x x x + ≠  − < <   − > ⇔   ≠ −   +. điểm A(-2 ;4) nên phương trình có dạng: ( ) ( ) 2 4 0 2 4 0a x b y ax by a b+ + − = ⇔ + + − = Gọi 1 2 3 : 4 3 4 0; : 2 6 0; : 2 4 0x y x y ax by a b∆ + − = ∆ + − = ∆ + + − = Từ giả thi t suy

Ngày đăng: 12/07/2014, 16:00

w