Bài 1: Cho phương trình: a) Tìm m để pt trên có 2 no phân biệt b) Tìm min của Bài 2: a) Cho pt có 2 no dương phân biệt. CMR phương trình cũng có 2 no dương phân biệt. b) Giải pt: c) CMR có duy nhất bộ số thực (x;y;z) thoã mãn: Bài 3: Cho góc xOy có số đo là 60 độ. (K) nằm trong góc xOy tiếp xúc với tia Ox tại M và tiếp xúc với Oy tại N. Trên tia Ox lấy P sao cho OP=3. OM. Tiếp tuyến của (K) qua P cắt Oy tại Q khác O. Đường thẳng PK cắt MN tại E. QK cắt MN ở F. a) tam giác MPE đồng dạng tam giác KPQ b) PQEF nội tiếp c) Gọi D là trung điểm PQ. CMR tam giác DEF đều. Bài 4:Giải PTNN: Bài 5: Giả sử tứ giác lồi ABCD có 2 hình vuông ngoại tiếp khác nhau. CMR: Tứ giác này có vô số hình vuông ngoại tiếp. . F. a) tam giác MPE đồng dạng tam giác KPQ b) PQEF nội tiếp c) Gọi D là trung điểm PQ. CMR tam giác DEF đều. Bài 4:Giải PTNN: Bài 5: Giả sử tứ giác lồi ABCD có 2 hình vuông ngoại tiếp khác nhau. CMR: