1. Trang chủ
  2. » Giáo án - Bài giảng

giao an day them he

8 552 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 8
Dung lượng 424 KB

Nội dung

   !"# $%&#'()*+# $,- ./'()*+# $0 ''()*+#  $12'3/,45 * ,,456'47'4489:;<+47'44='4! $>'3/?@<+#A:;'BC'./,45DE'FG H3I'!+JE $,'()*+#./#A:;+#:;8' KLMBC',-<+ ''()*+#N19 :;<+'()*+#='4!O $,,45./#A:;+#:;8' KLMBC',-<+ ''()*+#N19 :;<+,45='4!='4!O $P4BC',458Q,B&,F4R' $P4BC',458Q,Q,<SQ <-8TCQ UV()!"#W X%&#'()*+#W $12'3/W ! "#$%&$%'() $12YVW*+,) ! a/-(.&$%/0) ! 1234.* !564)7!*$%&$%/ XH,- ./'()*+# $12YVW3"8!95 !2 [ ] K O K O Z[ \KZOBZ] 'KZOBZf x g x d+ ∫ ∫ ∫ 12  \KZOBZ[ \KZOBZ ∫ ∫ '(:;;< X^0 ''()*+#    _BZ[ ∫  BZ[ BZ x C= + ∫ ∫ H ( )    Z BZ[  ] x C α α α α + + ≠ − ∫ ^   BZ[Y Z Z C+ ∫ `abY+6':;_/c a/   :ZBZ[d E:Z]  c ∫ b/   E:ZBZ[ :Z]  ∫ c/ Z Z   e BZ[ e ]  ∫ d/ Z Z   / BZ[ / ] K_ O Y/ a< ≠ ∫  f 1 a/ H   BZ[/Z] E: x ∫ b/ H   BZ[dEZ] : x ∫ X`,45 X`X12'3/,45WE+#:;\Y*CD*%<+/NY+/:;-F(A%X(g Y+#A'()*+#.\D*%F&(:; gKOhgK/O 87i'GY+,45./\=/8<+,&(Y+ K O Z b a f x d ∫ jVW $(/k/'G K O Z b a f x d ∫ Y+,45./\D*8EJl/mn $ K O Z b a f x d ∫ = K O b a F x = F(b) – F(a) * ,45o'4C(A<+EY-),45 K O Z b a f x d ∫ = K O b a f t dt ∫ = K O b a f v dv ∫ = X`XH,-./,45  K O Z _ a a f x d = ∫ H K O Z K O Z b a a b f x d f x d= − ∫ ∫ ^ K O Z K O Z] K O Z b c b a a c f x d f x d f x d= ∫ ∫ ∫ ` l K O K On Z K O Z] K O Z b b b a a a f x g x d f x d f x d+ = ∫ ∫ ∫ f K O Z K O Z b b a a kf x d k f x d= ∫ ∫ 2/ BJ'EDE'7' HXX,'()*+#6':MBC',-<+'()*+#  Ví dụ 1W,'()*+#./+#:;:/( /f(x) = x 3 + ^  H x x +  f(x) = K OK Ox x x+ − + f(x) = ^ H H x x x − − Bf(x) = x 4 + 3x 3 -5x + 2 Ví dụ 2W,'()*+#./+#:;:/( /f(x) = H H E:HZ]H:^Z]Zc \KZO[`: H Z \KZO[ ^ p f   K OK Ox x x x − − Bf(x) = H  H: Z]HE:Z]Z x + a,BC^WF#'()*+#gKZO./+#:; a/ f(x) = H H E:HZ]H:^Z]Zc biết F( ^ π )= - 3 2 b/ f(x) = ^ H H x x x − − biết F((-3) = 10 HXH,'()*+#6'47'4489:; 12YVW&$%=49'&$%9! >$%?@=") !8 A  \K(OB([ K OF u C+ ∫ 5  \l(KZOnBZ[ l K OnF u x C+ ∫ Ví dụ1W,'()*+#./+#:;:/( / E:Z :e xdx ∫  f Kf ^Ox dx+ ∫  ^ H E: tg x dx x ∫ B :Z E:e xdx ∫ Ví dụ 2 W, / H ^ q dZ x dx ∫  H ` x x dx− ∫  H  K O dx x x+ ∫ B   x dx e + ∫ Bài tập1W, / f Z : E: ^ ^ x c dx ∫  ^ H ` x x dx− ∫  H   dx x x− ∫ B HY ^x dx x + ∫ Bài tập2W, /  /Zdx ∫  E Zdx ∫  ^ K/  /ZOdx+ ∫ B ^ KE Z]E ZOdx ∫ g/ H  r q dx x x− + ∫ h/ H ^ H r q x dx x x + + + ∫ HXX^,'()*+#6'47'44='4! 12YVW3"8'!95  (KZO<sKZOBZ[ K O K O K O sK Ou x v x v x u x du− ∫ ∫ Ví dụ 1W,'()*+#./+#:;:/( /\KZO[Z H :HZ\KZO[Z H E:Z \KZO[Z H e Z B\KZO[Z ^ YKHZO Ví dụ 2W, a/ :Zx dx ∫ b/ Z K Ox e dx+ ∫ c/ KH O:x xdx+ ∫ (x) d/ ` : E:x xdx ∫ e/ f Kf ^Ox dx+ ∫ g/ Z e :Zdx ∫ h/ Yx xdx ∫ k/ H Yx xdx ∫ Bài tập 1W, a/ H :Zx dx ∫ b/ dZ xe dx ∫ c/ : ^ x x dx ∫ (x) d/ : H x e xdx ∫ Bài tập 2:, a/ H x e dx + ∫ b/ H /x xdx ∫ 3 c/ E:KYZOc dx ∫ (x) d/ H YK Ox x dx+ ∫ HXHX,,456':MBC',-<+'()*+#  Ví dụ 1W, a/  ^ _ K Ox x dx+ + ∫ b/ H H    K O e x x dx x x + + + ∫ c/ ^  Hx dx− ∫ d/ H  x dx+ ∫ Ví dụ 2W, a/ H ^ KH: ^ Ox cosx x dx π π + + ∫ b/  _ K O x e x dx+ ∫ c/  ^ _ K Ox x x dx+ ∫ d/ H  K OK Ox x x dx+ − + ∫ Bài tập W, a/ H ^  K^: H Ox cosx dx x π π + + ∫ b/  H _ K O x e x dx+ + ∫ c/ H H ^  K Ox x x x dx+ + ∫ d/ H  K OK Ox x x dx− + + ∫ HXHXH,,456'47'4489:; o'B9:; K O K O l(K On(sKZO Z K O u b b a u a f x d f u du= ∫ ∫ Ví dụ1W, a/ H ^ H ^ : xcos xdx π π ∫ b/ H H ^ ^ : xcos xdx π π ∫ c/ H _ :  ^ x dx cosx π + ∫ d/ ` _ tgxdx π ∫ g/ ` r E gxdx π π ∫ h/ r _  `: xcosxdx π + ∫ Ví dụ 2W, a/  H _ x x dx+ ∫ b/  H _ x x dx− ∫ c/  ^ H _ x x dx+ ∫ d/  H ^ _  x dx x + ∫ g/  ^ H _ x x dx− ∫ h/ H ^    dx x x + ∫ Ví dụ 3W, 4 a/  H _   dx x+ ∫ b/  H   H H dx x x − + + ∫ c/  H _   dx x + ∫ d/  H H _  K ^ O dx x+ ∫ g/ H : ` x e cosxdx π π ∫ h/ H ` : cosx e xdx π π ∫ f/ H  H _ x e xdx + ∫ k/ H ^ H ^ : xcos xdx π π ∫ Bài tập 1W, 1/ H : ` x e cosxdx π π ∫ 2/ H ` : cosx e xdx π π ∫ 3/ H  H _ x e xdx + ∫ Bài tập 2W, 1/ H ^ H ^ : xcos xdx π π ∫ 2/ H H ^ ^ : xcos xdx π π ∫ 3/ H _ :  ^ x dx cosx π + ∫ 4/ ` _ tgxdx π ∫ 5/ ` r E gxdx π π ∫ 6/ r _  `: xcosxdx π + ∫ Bài tập 3W, 1/  H _ x x dx+ ∫ 2/  H _ x x dx− ∫ 3/  ^ H _ x x dx+ ∫ 4/  H ^ _  x dx x + ∫ 5/  ^ H _ x x dx− ∫ 6/ H ^    dx x x + ∫ Bài tập 4 W, 1/   Y e x dx x + ∫ 2/  :KY O e x dx x ∫ 3/   ^Y Y e x x dx x + ∫ 4/ HY   e x e dx x + ∫ 5/ H H  Y Y e e x dx x x + ∫ 6/ H H  K Y O e e dx cos x+ ∫ Bài tập 5W, 1/ H    x dx x+ − ∫ 2/  _ H  x dx x + ∫ 3/  _ x x dx+ ∫ 4/  _   dx x x+ + ∫ 5/  _   dx x x+ − ∫ 6/ ^  x dx x + ∫  HXHX^,,456'47'44='4! o',45='4!W (K O<sKZO Z K O K O K O sK O b b b a a a x d u x v x v x u x dx= − ∫ ∫ 5 BCDEFG'E' tDng 1 : K O ax ax f x cosax dx e β α           ∫  K O sK O : : E: ax ax u f x du f x dx ax ax dv ax dx v cosax dx e e = =           ⇒       = =                   ∫ tDng 2: K OYK Of x ax dx β α ∫ 1u YK O K O K O dx du u ax x dv f x dx v f x dx  = =   ⇒   =   =  ∫ Ví dụ1W, / ^ ^  Y e x dx x ∫   Y e x xdx ∫   H _ YK Ox x dx + ∫ B H  Y e x xdx ∫  Ví dụ 2W, / ^ ^  Y e x dx x ∫   Y e x xdx ∫   H _ YK Ox x dx + ∫ B H  Y e x xdx ∫ Tích phân tng phn cc hàm s cn kh!o l!o đ%t u và dv a,BCHW,,45:/( /  H H _ K O x x e dx x + ∫ 8u H H K O x u x e dx dv x  =   =  +   ^ v ` ^ H K O x dx x − ∫ 8u f ^ ` ^ K O u x x dx dv x  =   =  −       H H H  H H H H H H H H _ _ _ _  K O K O  K O dx x x dx x dx dx I I x x x x + − = = − = − + + + + ∫ ∫ ∫ ∫ ,   H _  dx x = + ∫ 6'47'4489:; , H [  H H H _ K O x dx x+ ∫ 6'47'44='4!W8u H H K O u x x dv dx x =    =  +  6 Ví dụ 2WF#Zw_:/EE  H H _  K O x t e dx t = + ∫ 0+S4W,,45:/( / H _ K E:ZO:Zx c dx π + ∫    K OY e x xdx x + ∫  H H  YK Ox x dx + ∫ B ^ H ` /x xdx π π ∫ HX^XP4BC',45,B&,F4R' Công thức tính diện tích hình phẳng t&$%94>!I1?8EGC5J(41K&$%8 9'!LJ&!8&1CMNA!O(41K &$%89 '!LJ&!8&1CMNA!O& K O Z b a f x d ∫ tCEGC5J(41K&$%89'!LJ&!8 &1 P(HQ*RS5$%&<5G H 8 T 8@@@8  )4>!81? P(TQ*OEGC5JUC =O&  H  K O Z K O Z] K O Z]XXX K O Z n x x b b a a x x f x d f x d f x d f x d= + ∫ ∫ ∫ ∫ P(VQB.4>  I W ?8$%X!)EY@BC K O Z j i x x f x d ∫ Ví dụ 1W,B&,F4R''bJx /1y2+#:;)[Z]Z d NDCE+N87z'R'Z[dH<+87z'R'Z[ 1y2+#:;)[e Z ]NDCE+N87z'R'Z[_<+87z'R'Z[ 1y2+#:;)[Z ^ d`ZNDCE+N87z'R'Z[dH<+87z'R'Z[` B1y2+#:;)[:ZNDCE+NDC('<+87z'R'Z[H π Ví dụ 2W,B&,F4R''bJx /1y2+#:;)[Z]Z d NDCE+N87z'R'Z[dH<+87z'R'Z[ 1y2+#:;)[e Z ]NDCE+N87z'R'Z[_<+87z'R'Z[ 1y2+#:;)[Z ^ d`ZNDCE+N87z'R'Z[dH<+87z'R'Z[` B1y2+#:;)[:ZNDCE+NDC('<+87z'R'Z[H π tE/+#:;)[\KZON)['KZOY*CD*8EJl/mnNB&,F4R''bJx )[\KZON)['KZO<+/87z'R'Z[/NZ[87i,eEo':/( L[ K O K O Z b a f x g x d− ∫ t,B&,F4R''bJx)[\KZON)['KZO<+/87z'R'Z[/NZ[ P(HQ*RS5$%&$%5G H 8 T 8@@@8  )4>!81? P(TQ*OEGC5JUC 7 =O&  H  K O K O Z K O K O Z] K O K O Z]XXX K O K O Z n x x b b a a x x f x g x d f x g x d f x g x d f x g x d− = − − + − ∫ ∫ ∫ ∫ P(VQB.4>  I W ?8$%Z$%X!)EY@BC K O K O Z j i x x f x g x d− ∫ HX^XHP4BC',45,Q,<SQ 8

Ngày đăng: 12/07/2014, 06:00

TỪ KHÓA LIÊN QUAN

w