1. Trang chủ
  2. » Khoa Học Tự Nhiên

Đơn Cực Từ (Phần 2) pdf

9 267 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 314,1 KB

Nội dung

Đơn Cực Từ (Phần 2) Hệ phương trình Mắc-xoen Định luật Gau-xơ cho từ học Định luật Gau-xơ cho từ học một trong những phương trình cơ bản của điện từ học – là một cách hình thức để ta diễn đạt kết luận rút ra từ những hiện tượng từ mà ta quan sát được, cụ thể là không tồn tại các cực từ cô lập. Phương trình này khẳng định là từ thông toàn phần qua một mặt Gau-xơ kín phải bằng 0: Định luật Gau-xơ cho từ học: (p.t 1) Ta đối chiếu phương trình này với định luật Gau-xơ cho điện học đó là: (p.t. 2) Trong cả hai định luật này, tích phân được lấy theo một mặt Gau-xơ hoàn toàn kín. Việc số không chỉ xuất hiện ở vế phải của p.t.1 mà không có ở vế phải của p.t. 2 có nghĩa là trong từ học không có “từ tích tự do” tương ứng với điện tích tự do trong điện học Các đường sức từ của (a) một ống dây thẳng và (b) một nam châm ngắn. Trong cả hai trường hợp đầu trên đều là cực bắc. (c) Đường sức điện trường của hai đĩa nhiễm điện. Ở khoảng cách lớn cả ba trường hợp này giống như trường cảu một lưỡng cực các đường ký hiệu I và II chỉ các mặt Gau-xơ kín Hình a cho thấy mặt Gau-xơ được đánh dấu I, bao một đầu của ống dây ngắn. Như đã thấy, ống dây thẳng như vậy tạo ra một từ trường giống trường của một lưỡng cực từ ở khoảng cách xa. Đối với những điểm xa như thế, đầu của ống dây thẳng bị bao bởi mặt I thể hiện giống cực từ bắc. Lưu ý đường sức từ đi vào mặt Gau-xơ ở trong ống dây thẳng và đi ra khỏi mặt ở ngoài ống dây thẳng. Không có đường nào được sinh ra hoặc kết thúc ở trong mặt này, nói cách khác không có nguồn sinh hoặc hủy , hay nói cách khác nữa không có các cực từ tự do. Như vậy đối với mặt I ở hình a, thông lượng toàn phần bằng 0, như định luật Gau-xơ cho từ học (p.t. 1) đòi hỏi. Ta cũng có bằng không cho mặt II trên hình b, và cho mọi mặt kín có thể vẽ trên hình này. Sự việc cũng không thay đổi nếu ta thay ống dây thẳng ngắn bằng một thỏi nam châm ngắn, như trên hình b. Ở đây cũng bằng 0 cho mọi mặt kín mà ta có thể vẽ. Hình c cho thấy một sự tương tự tĩnh điện với hai lưỡng cực từ này. Nó gồm hai đĩa tròn tích điện trái dấu đặt đối diện với nhau. Ở những điểm ở xa điện trườg của hệ đĩa này cũng là điện trường của một lưỡng cực. Tuy nhiên, trong trường hợp này có thông lượng toàn phần (hướng ra ngoài) của đường sức qua mặt Gau-xơ đánh dấu I; có nguồn sinh ở bên trong mặt, cụ thể là mặt I bao quanh điện tích dương (các điện tích âm ở đĩa kia hủy các đường sức điện trường). Dĩ nhiên đối với mặt Gau-xơ đánh dấu II ở hình c, ta có vì mặt này không bao điện tích gì cả. Các phương trình cơ bản của điện từ học Định luật Gau-xơ về điện học (p.t. 3) Định luật Gau-xơ về từ học (p.t. 4) Định luật cảm ứng của Fa-ra-đây (p.t. 5) Định luật Am-pe (p.t. 6) Sự bất đối xứng thứ nhất Sự bất đối xứng này gắn liền một sự thực là trong tự nhiên tồn tại các tâm tích điện cô lập như electron, proton… nhưng hình như không có các tâm mang từ tích (đơn cực từ). Như vậy ta phải đoán nhận như thế nào về việc có đại lượng q ở vế phải của p.t. 3 nhưng lại không có đại lượng từ tương tự ở vế phải của p.t. 4. Tương tự như vậy vế phải của p.t.6 có số hạng nhưng vế phải của p.t. 5 lại không có số hạng tương tự (tức là dòng của các đơn cực từ). “Sự thiếu đối xứng” này, kết hợp với sự tiên đoán chi tiết của vài lí thuyết sơ bộ về bản chất của các hạt sơ cấp và các lực, đã thúc đẩy các nhà vật lí tìm kiếm một cách rất nghiêm túc và bằng nhiều con đường khác nhau các đơn cực từ, song không ai tìm thấy cả. Tuy nhiên cũng có một vài đầu mối, như thể thiên nhiên đang gợi ý và hướng dẫn các nhà vật lí trên bước đường khám phá của họ. Sự bất đối xứng thứ hai Sự bất đối xứng này nổi cộm lên như một ngón tay đau vậy: ở vế phải của định luật Fa-ra-đây về cảm ứng (p.t. 5) ta thấy có số hạng , và ta đoán nhận định luật này một cách linh hoạt như sau: Nếu ta thay đổi một từ trường ta sẽ tạo ra một điện trường Từ nguyên lí đối xứng, ta có quyền nghĩ rằng phải có một quan hệ đối xứng với quan hệ trên, cụ thể là: Nếu ta thay đổi một điện trường ta sẽ tạo ra một từ trường này chỉ dựa trên đơn thuần vào lập luận đối xứng và đã tỏ ra là đúng khi ta kiểm tra bằng thực nghiệm trong phòng thí nghiệm – Nó cung cấp cho chúng ta số hạng còn thiếu trong p.t 6. Thật khó tin rằng ở đây thiên nhiên lại cố tình xoá bỏ đi tính đối xứng đẹp đẽ vốn có của mình. Một số nhà vật lí đã nghĩ như vậy. Do đó ngay sau khi lí thuyết Mắc-xoen vừa mới ra đời, người ta cố tìm những bằng chứng chứng tỏ rằng trong tự nhiên có từ tích. Người ta coi lớp từ tích kép (tương tự lớp điện tích kép) là một trong những bằng chứng đó. Một số nhà vật lí có niềm tin vào sự tồn tại của các từ tích rất mãnh liệt. Họ coi định luật tương tác giữa các từ tích cũng giống như định luật tương tác giữa các điện tích, nghĩa là tương tác giữa các từ tích cũng tuân theo định luật Cu-lông Trong một thời gian dài không có một quan sát nào, không có một sự kiện thực nghiệm nào chứng tỏ về sự tồn tại của các từ tích. Vì vậy giả thiết về từ tích, về định luật tương tác giữa các từ tích hầu như không được nhắc đến. Tuy nhiên, điều đó không có nghĩa là giả thiết về từ tích đã bị loại bỏ, mà ngược lại, nó còn được khôi phục và phát triển. Việc khôi phục này bắt đầu từ ý kiến của Đi-rắc, một trong những nhà vật lí lỗi lạc nhất của thời đại chúng ta Paul Adrien maurice Dirac (1902-1984) Nhà vật lí lí thuyết người Anh Năm 1931, Đi-rắc đưa thêm vào trong hệ phương trình Mắc-xoen đại lượng từ tích và dòng từ (nói đúng hơn là mật độ từ tích và mật độ dòng từ) tương tự như điện tích và dòng điện.Việc đưa ra các đại lượng đó xuất phát từ lập luận của ông là, không có một định luật vật lí nào cấm khả năng tồn tại các từ tích dương, các từ tích âm một cách tách biệt nhau. Hay nói đúng hơn là cho đến lúc đó chưa tìm thấy một định luật nào như thế. Đi-rắc gọi các từ tích dương, các từ tích âm tồn tại một cách tách biệt là các đơn cực từ. Ý tưởng đó sẽ được trình bày trong bài viết tiếp theo . Đơn Cực Từ (Phần 2) Hệ phương trình Mắc-xoen Định luật Gau-xơ cho từ học Định luật Gau-xơ cho từ học một trong những phương trình cơ bản của điện từ học – là một cách. ra một từ trường giống trường của một lưỡng cực từ ở khoảng cách xa. Đối với những điểm xa như thế, đầu của ống dây thẳng bị bao bởi mặt I thể hiện giống cực từ bắc. Lưu ý đường sức từ đi vào. thức để ta diễn đạt kết luận rút ra từ những hiện tượng từ mà ta quan sát được, cụ thể là không tồn tại các cực từ cô lập. Phương trình này khẳng định là từ thông toàn phần qua một mặt Gau-xơ

Ngày đăng: 12/07/2014, 01:20

TỪ KHÓA LIÊN QUAN