THI TH I HC LN II NM 2008-2009. Mụn: Toỏn A. Thi gian: 180 phỳt ( Khụng k giao ). I. PHN CHUNG CHO TT C TH SINH (7 im). Cõu I (2 im): Cho hm s 43 23 += xxy (C) 1) Kho sỏt và vẽ đồ thị hm s 43 23 += xxy (C) 2) Gi (D) l ng thng qua im A(3;4) v cú h s gúc l m. nh m (D) ct (C) ti 3 im phõn bit A,M,N sao cho 2 tip tuyn ca (C) ti M v N vuụng gúc vi nhau. Cõu II (2 im):1) Gii phng trỡnh: 2 2 2009 cos2 2 2 sin 4cos sin 4sin cos 4 x x x x x x + + = + ữ . 2) Gii h phng trỡnh: 2 2 3 2 3 1 1 (1 ) 4 1 4 x x y y x x x y y y + + + = + + = . Cõu III (1 im): Tớnh tớch phõn: 0 2 2 1 2 3 4 4 . 2 1 4 4 5 x x I x x dx x x = + + ữ ữ + + . Cõu IV (1 im):Trờn ng thng vuụng gúc ti A vi mt phng ca hỡnh vuụng ABCD cnh a ta ly im S vi SA = 2a . Gi B, D l hỡnh chiu vuụng gúc ca A lờn SB v SD. Mt phng (ABD ) ct SC ti C . Tớnh th tớch khi a din ABCDD C B. Cõu V (1 im): Tam giác ABC có đặc điểm gì nếu các góc thoả mãn: cos .cos cos .cos cos .cos 3 ? cos cos cos 2 A B B C C A C A B + + = II. PHN RIấNG CHO TNG CHNG TRèNH ( 3 im). Thớ sinh ch c lm mt trong hai phn (phn 1 hoc phn 2) 1. Theo chng trỡnh Chun: Cõu VI.a (2 im): 1) Trong mt phng Oxy cho tam giỏc ABC vi A(1; -2), ng cao : 1 0CH x y + = , phõn giỏc trong : 2 5 0BN x y+ + = . Tớnh din tớch tam giỏc ABC. 2) Trong khụng gian vi h ta Oxyz cho hai ng thng : 1 1 1 ( ): 2 1 1 x y z d + = = v 2 2 1 ( ) : 1 1 1 x y z d + = = . Vit phng trỡnh mt phng cha (d 1 ) v hp vi (d 2 ) mt gúc 30 0 . Cõu VII.a (1 im): Chng minh rng vi a, b, c>0 ta cú: 1 1 1 1 1 1 1 1 1 4 4 4 3 3 3 2 2 2a b c a b b c c a a b c b c a c a b + + + + + + + + + + + + + + + 2. Theo chng trỡnh Nõng cao: Cõu VI.b (2 im) 1) Trong mt phng Oxy cho ng trũn (C) tõm I(-1; 1), bỏn kớnh R=1, M l mt im trờn ( ): 2 0d x y + = . Hai tip tuyn qua M to vi (d) mt gúc 45 0 tip xỳc vi (C) ti A, B. Vit phng trỡnh ng thng AB. 2) Trong khụng gian Oxyz cho t din ABCD bit A(0; 0; 2), B(-2; 2; 0), C(2; 0; 2), ( )DH ABC v 3DH = vi H l trc tõm tam giỏc ABC. Tớnh gúc gia (DAB) v (ABC). Cõu VII.b (1 im): Chng minh rng vi a, b, c>0 ta cú: 1 ( )( ) ( )( ) ( )( ) a b c a a b a c b b a b c c c a c b + + + + + + + + + + + . ĐÁP ÁN THI THỬ LẦN 2 NĂM 2008- 2009- MÔN TOÁN. I. PHẦN CHUNG. Câu Phần Nội dung Điểm Câu I (2,0) 1(1,0 ) HS tù gi¶i 2(1,0) HS tù gi¶i Câu Phần Nội dung Điểm Câu II (2,0) 1(1,0 ) 2 2 2009 cos2 2 2 sin 4cos sin 4sin cos 4 x x x x x x π + + = + ÷ 2 2 cos sin 2(sin cos ) 4sin .cos (sin cos )x x x x x x x x⇔ − + + = + (cos sin )(cos sin 4cos .sin 2) 0x x x x x x⇔ + − − + = cos sin 0 (1) cos sin 4sin .cos 2 0 (2) x x x x x x + = ⇔ − − + = + Giải (1): (1) tan 1 4 x x k π π ⇔ = − ⇔ = − + + Giải (2): Đặt cos sin , 2x x t t− = ≤ ta có phương trình: 2 2 0t t+ = . 0 1/ 2 t t = ⇔ = − • Với 0t = ta có: tan 1 4 x x k π π = ⇔ = + • Với 1/ 2t = − ta có: arccos( 2 / 4) / 4 2 cos( ) 2 / 4 4 arccos( 2 / 4) / 4 2 x k x x k π π π π π = − − + + = − ⇔ = − − − + KL: Vậy phương trình có 4 họ nghiệm: 4 x k π π = − + , 4 x k π π = + , arccos( 2 / 4) / 4 2x k π π = − − + , arccos( 2 / 4) / 4 2x k π π = − − − + . 0,5 0,25 0,25 2(1,0) §k 0y ≠ 2 2 2 2 3 3 3 2 3 1 1 1 1 (1 ) 4 4 1 1 1 ( ) 4 4 x x x x y y y y x x x x x x y y y y y y + + + = + + + = ⇔ + + + = + + = − ®Æt 1 a x y x b y = + = Ta ®îc 2 2 2 3 3 2 2 2 4 4 2 4 2 2 1 2 4 ( 4) 4 4 4 0 a a b a a b a a b a b a ab a a a a a a + − = + − = + − = = ⇔ ⇔ ⇔ = − = − + − = − + = 0,25 0,25 0,25 Khi ®ã 1 1 1 2 x y y x x x = = ⇔ = + = KL 0,25 Câu Phần Nội dung Điểm Câu III (1,0) 0 2 2 1 2 3 4 4 . 2 1 (2 1) 4 x x I x x dx x − − − = + + ÷ ÷ + + ∫ 0 0 2 2 1 1 2 2 4 (2 1) ( . 2 1) (2 1) 4 x dx x x dx x − − − + = + + + + ∫ ∫ 0 0 2 2 1 1 2 2 4 (2 1) ( . 2 1) (2 1) 4 x dx x x dx x − − − + = + + + + ∫ ∫ + Tính: 0 2 1 2 1 2 4 (2 1) (2 1) 4 x I dx x − − + = + + ∫ . Đặt: 1 2 1 2sin , ; cos , 0, 0 2 2 2 6 x t t dx tdt x t x t π π π + = ∈ − ⇒ = = − ⇒ = = ⇒ = ÷ . Khi đó: 2 2 6 6 6 6 1 2 2 2 0 0 0 0 2cos 2 1 sin 1 4sin 4 2(sin 1) 2 sin 1 t tdt dt I dt dt t t t π π π π − − = = = − + + + + ∫ ∫ ∫ ∫ = 6 2 0 12 sin 1 dt t π π − + + ∫ + Tính: 6 6 2 2 2 0 0 (tan ) sin 1 2(tan 1/ 2) dt d t I t t π π = = + + ∫ ∫ . Đặt: 2 tan tan 2 t y= . Suy ra: 2 2 2 (tan ) (tan ) (1 tan ) 2 2 d t d y y dy= = + , với 0 0, 6 t y t y π ϕ = ⇒ = = ⇒ = sao cho 6 tan 3 ϕ = , (0 ) 2 π ϕ < < Khi đó: 2 0 0 2 2 2 . 2 2 2 I dy y ϕ ϕ ϕ = = = ∫ + Tính: 0 3 1 2 ( . 2 1)I x x dx − = + ∫ . Đặt: 2 1 1 2 1 2 1, , 0, 1 2 2 t x x t dx tdt x t x t= + ⇒ = − = = − ⇒ = = − ⇒ = . Khi đó: 1 2 5 3 2 1 2 0 0 1 1 2 10 6 15 t t t I t dt − = = − =− ÷ ∫ KL: Vậy 1 2 3 1 2 15 12 2 I I I I π ϕ = + + = − − + , ( 6 tan 3 ϕ = , (0 ) 2 π ϕ < < ) 0,25 0,25 0,25 0,25 Câu Phần Nội dung Điểm Câu IV (1,0) + Trong tam giác SAB hạ 'AB SC⊥ . Trong tam giác SAD hạ 'AD SD ⊥ . Dễ có: , ( )BC SA BC BA BC SAB⊥ ⊥ ⇒ ⊥ Suy ra: 'AB BC⊥ , mà 'AB SB⊥ . Từ đó có ' ( ) ' (1)AB SAC AB SC⊥ ⇒ ⊥ . Tương tự ta có: ' (2)AD SC⊥ . Từ (1) và (2) suy ra: ( ' ') ' 'SC AB D B D SC⊥ ⇒ ⊥ . Từ đó suy ra: ' ( ' ' ')SC AB C D⊥ + Ta có: 2 2 2 1 1 1 2 5 ' ' 5 a AB AB SA BA = + ⇒ = 2 2 2 2 4 4 5 ' ' 4 5 5 SB SA AB a a a⇒ = − = − = , 2 2 5SB SA AB a= + = . Suy ra: ' 4 5 SB SB = ; Lại có B’D’ // BD (cùng thuộc mp(SBD) và cùng vuông góc với SC) nên ' ' 'B D AC⊥ (vì dễ có ( )BD SAC⊥ nên 'BD AC⊥ ). Xét hai tam giác đồng dạng SB’D’ và SBD suy ra: ' ' ' 4 5 B D SB BD SB = = 4 2 ' ' 5 a B D⇒ = . Ta có: 2 2 2 2 2 1 1 1 2 3 2 6 ' ' ' ' 3 3 a AC SC SA AC a AC SA AC = + ⇒ = ⇒ = − = + Ta có: 3 . ' ' ' ' ' ' 1 1 1 16 . ' . ' '. '. ' 3 3 2 45 S AB C D AB C D V S SC B D AC SC a= = = . 3 . 1 2 . 3 3 S ABCD ABCD V S SA a= = . Suy ra thể tích đa diện cần tìm là: 3 . . ' ' ' 14 45 S ABCD S AB C D V V V a= − = . Chú ý: Vẽ hình sai không chấm. 0,25 0,5 0,25 Câu Phần Nội dung Điểm Câu VIIa (1,0) Dễ có: 2 1 1 4 ( ) 4 ( , 0)(*)x y xy x y x y x y + ≥ ⇒ + ≥ < + . + Chứng minh: 1 1 1 1 1 1 4 4 4 3 3 3a b c a b b c c a + + ≥ + + + + + . Áp dụng 2 lần (*) ta có: 1 1 1 1 16 3a b b b a b + + + ≥ + hay 1 3 16 3a b a b + ≥ + (1) Tương tự ta có: 1 3 16 3b c b c + ≥ + (2) và 1 3 16 3c a c a + ≥ + (3) Cộng (1), (2) và (3) theo vế với vế rồi rút gọn ta có điều phải chứng minh. 0,25 0,25 O A D B C S C' B' D' + Chứng minh: 1 1 1 1 1 1 3 3 3 2 2 2a b b c c a a b c b c a c a b + + ≥ + + + + + + + + + + + Áp dụng (*) ta có: 1 1 4 2 3 2 2( 2 ) 2a b b c a a b c a b c + ≥ = + + + + + + + (4) Tương tự ta có: 1 1 2 (5) 3 2 2b c c a b b c a + ≥ + + + + + 1 1 2 (6) 3 2 2c a a b c c a b + ≥ + + + + + Cộng (4), (5) và (6) theo vế với vế ta có điều phải chứng minh. 0,25 0,25 II. PHẦN RIÊNG. 1. Chương trình Chuẩn. Câu Phần Nội dung Điểm CâuVIa. (1,0) 1(1,0 ) + Do AB CH ⊥ nên AB: 1 0x y+ + = . Giải hệ: 2 5 0 1 0 x y x y + + = + + = ta có (x; y)=(-4; 3). Do đó: ( 4;3)AB BN B∩ = − . + Lấy A’ đối xứng A qua BN thì 'A BC∈ . - Phương trình đường thẳng (d) qua A và Vuông góc với BN là (d): 2 5 0x y− − = - Gọi ( )I d BN= ∩ . Giải hệ: 2 5 0 2 5 0 x y x y + + = − − = . Suy ra: I(-1; 3) '( 3; 4)A⇒ − − + Phương trình BC: 7 25 0x y+ + = . Giải hệ: 7 25 0 1 0 x y x y + + = − + = Suy ra: 13 9 ( ; ) 4 4 C − − . 0,25 0,25 0,25 B C A H N + 2 2 450 ( 4 13 / 4) (3 9 / 4) 4 BC = − + + + = , 2 2 7.1 1( 2) 25 ( ; ) 3 2 7 1 d A BC + − + = = + . Suy ra: 1 1 450 45 ( ; ). .3 2. . 2 2 4 4 ABC S d A BC BC= = = 0,25 Câu Phần Nội dung Điểm CâuVIa. (1,0) 2(1,0) Giả sử mặt phẳng cần tìm là: 2 2 2 ( ) : 0 ( 0)ax by cz d a b c α + + + = + + > . Trên đường thẳng (d 1 ) lấy 2 điểm: A(1; 0; -1), B(-1; 1; 0). Do ( ) α qua A, B nên: 0 2 0 a c d c a b a b d d a b − + = = − ⇔ − + + = = − nên ( ) : (2 ) 0ax by a b z a b α + + − + − = . Yêu cầu bài toán cho ta: 0 2 2 2 2 2 2 1. 1. 1.(2 ) 1 sin 30 2 1 ( 1) 1 . (2 ) a b a b a b a b − + − = = + − + + + − 2 2 2 2 2 3 2 3(5 4 2 ) 21 36 10 0a b a ab b a ab b⇔ − = − + ⇔ − + = Dễ thấy 0b ≠ nên chọn b=1, suy ra: 18 114 21 18 114 21 a a − = + = KL: Vậy có 2 mặt phẳng thỏa mãn: 18 114 15 2 114 3 114 0 21 21 21 x y z + + − + + − = 18 114 15 2 114 3 114 0 21 21 21 x y z − − + + + − = . 0,25 0,25 0,25 0,25 Câu Phần Nội dung Điểm 2. Chương trình Nâng cao. Câu Phần Nội dung Điểm CâuVIb. (1,0) 1(1,0 ) Dễ thấy ( )I d∈ . Hai tiếp tuyến hợp với (d) một góc 45 0 suy ra tam giác MAB vuông cân và tam giác IAM cũng vuông cân . Suy ra: 2IM = . ( ) (M d M∈ ⇒ a; a+2), ( 1; 1)IM a a= + + uuur , 0 2 2 1 2 2 a IM a a = = ⇔ + = ⇔ = − . Suy ra có 2 điểm thỏa mãn: M 1 (0; 2) và M 2 (-2; 0). 0,5 + Đường tròn tâm M 1 bán kinh R 1 =1 là (C 1 ): 2 2 4 3 0x y y+ − + = . Khi đó AB đi qua giao điểm của (C ) và (C 1 ) nên AB: 2 2 2 2 4 3 2 2 1 1 0x y y x y x y x y+ − + = + + − + ⇔ + − = . + Đường tròn tâm M 2 bán kinh R 2 =1 là (C 2 ): 2 2 4 3 0x y x+ + + = . Khi đó AB đi qua giao điểm của (C ) và (C 2 ) nên AB: 2 2 2 2 4 3 2 2 1 1 0x y x x y x y x y+ + + = + + − + ⇔ + + = . + KL: Vậy có hai đường thẳng thỏa mãn: 1 0x y+ − = và 1 0x y+ + = . 0,25 0,25 Câu Phần Nội dung Điểm CâuVIb. (1,0) 2(1,0) Trong tam giác ABC, gọi K CH AB= ∩ . Khi đó, dễ thấy ( )AB DCK⊥ . Suy ra góc giữa (DAB) và (ABC) chính là góc DKH∠ .Ta tìm tọa độ điểm H rồi Tính được HK là xong. + Phương trình mặt phẳng (ABC). - Vecto pháp tuyến ( ) [ , ] 0; 4; 4n AB AC= = − − r uuur uuur - (ABC): 2 0y z+ − = . + ( )H ABC∈ nên giả sử ( ; ;2 )H a b b− . Ta có: ( ; ; ), (4; 2;2).AH a b b BC= − = − uuur uuur ( 2; ; ), ( 2;2; 2).CH a b b AB= − − = − − uuur uuur Khi đó: . 0 0 2 2 2 0 . 0 BC AH a b a b a b AB CH = − = ⇔ ⇔ = = − − + + = = uuur uuur uuur uuur Vậy H(-2; -2; 4). + Phương trình mặt phẳng qua H và vuông góc với AB là: 4 0x y z− + − = . Phương trình đường thẳng AB là: 2 x t y t z t = = − = + . Giải hệ: 2 4 0 x t y t z t x y z = = − = + − + − = ta được x =2/3; y =-2/3, z =8/3. Suy ra: K(2/3;-2/3; 8/3). Suy ra: 2 2 2 2 2 8 96 2 2 4 3 3 3 3 HK = + + − + + − = ÷ ÷ ÷ . Gọi ϕ là góc cần tìm thì: tan / 96 /12 6 / 3 arctan( 6 / 3)DH HK ϕ ϕ = = = ⇒ = Vậy arctan( 6 / 3) ϕ = là góc cần tìm. 0,25 0,25 0,25 0,25 C A B D H K Cõu Phn Ni dung im CõuVIIb. (1,0) Với a,b >0 ta có (a+b)(a+c)- ( ) ( ) ( ) ( ) 2 2 2 2 ( ) 2 ( ) 0 a b a c ( ) a b a c ( ) ( )( ) ab ac a bc a bc a bc ab ac ab ac a a a a a b a c a ab ac a b c + = + = + + + + + + = + + + + + + + CM t 2 rồi cộng vế với vế ta đợc dpcm 0,25 0,5 0,25 CõuV Ta có tanA+tanB= sin cos .cos tan cos .cos cos tan .tan C A B C A B C A B = ABC không nhọn nên đặt x=tanA>0,y=tanB>0,z=tanC>0 Từ GT ta có 3 2 x y z y z z x x y + + = + + + với x,y,z>0.Dễ dàng CM đợc 3 2 x y z y z z x x y + + + + + .Dấu =xảy ra khi và chỉ khi x=y=z hay tam giác ABC đều