1. Trang chủ
  2. » Giáo án - Bài giảng

THI THỬ ĐH -TOÁN_2010 (4)

3 147 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 369 KB

Nội dung

TRƯỜNG THPT H ẬU LỘC 2 ĐỀ THI THỬ ĐẠI HỌC LẦN 1 - NĂM HỌC 2008 - 2009 Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ CÁC THÍ SINH Câu I (2 điểm) Cho hàm số ( ) ( ) 3 2 2 2 y x 3mx 3 m 1 x m 1= − + − − − ( m là tham số) (1). 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m 0. = 2. Tìm các giá trị của m để đồ thị hàm số (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ dương . Câu II (2 điểm) 1. Giải phương trình: 2sin 2x 4sin x 1 0. 6 π   − + + =  ÷   2. Giải hệ phương trình: ( ) ( ) ( ) ( ) ( ) 2 2 2 2 x y x y 13 x, y . x y x y 25  − + =  ∈  + − =   ¡ Câu III (1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB a, AD 2a,= = cạnh SA vuông góc với đáy, cạnh SB tạo với mặt phẳng đáy một góc o 60 . Trên cạnh SA lấy điểm M sao cho a 3 AM 3 = . Mặt phẳng ( ) BCM cắt cạnh SD tại điểm N . Tính thể tích khối chóp S.BCNM. Câu IV (2 điểm) 1. Tính tích phân: 6 2 dx I 2x 1 4x 1 = + + + ∫ 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số : y = 2sin 8 x + cos 4 2x PHẦN TỰ CHỌN: Thí sinh chọn câu V.a hoặc câu V.b Câu V.a.( 3 điểm ) Theo chương trình Chuẩn 1. Cho đường tròn (C) : ( ) ( ) 2 2 x 1 y 3 4− + − = và điểm M(2;4) . a) Viết phương trình đường thẳng đi qua M và cắt đường tròn (C) tại hai điểm A, B sao cho M là trung điểm của AB b) Viết phương trình các tiếp tuyến của đường tròn (C) có hệ số góc k = -1 . 2. Cho hai đường thẳng song song d 1 và d 2 . Trên đường thẳng d 1 có 10 điểm phân biệt, trên đường thẳng d 2 có n điểm phân biệt ( n 2≥ ). Biết rằng có 2800 tam giác có đỉnh là các điểm đã cho. Tìm n. Câu V.b.( 3 điểm ) Theo chương trình Nâng cao 1. Áp dụng khai triển nhị thức Niutơn của ( ) 100 2 x x+ , chứng minh rằng: 99 100 198 199 0 1 99 100 100 100 100 100 1 1 1 1 100C 101C 199C 200C 0. 2 2 2 2         − +×××− + =  ÷  ÷  ÷  ÷         2. . Cho hai đường tròn : (C 1 ) : x 2 + y 2 – 4x +2y – 4 = 0 và (C 2 ) : x 2 + y 2 -10x -6y +30 = 0 có tâm lần lượt là I, J a) Chứng minh (C 1 ) tiếp xúc ngoài với (C 2 ) và tìm tọa độ tiếp điểm H . b) Gọi (d) là một tiếp tuyến chung không đi qua H của (C 1 ) và (C 2 ) . Tìm tọa độ giao điểm K của (d) và đường thẳng IJ . Viết phương trình đường tròn (C) đi qua K và tiếp xúc với hai đường tròn (C 1 ) và (C 2 ) tại H . Hết Cán bộ coi thi không giải thích gì thêm. trờng thpt hậu lộc 2 đáp án đề thi thử đại học lần 1 năm học 2008 - 2009 Môn thi: toán Thời gian làm bài: 180 phút, không kể thời gian giao đề Câu Nội dung Điểm I 2.0đ 1 1,25đ Với m = 0 , ta có : y = x 3 3x + 1 - TXĐ: R - Sự biến thiên: + ) Giới hạn : x x Lim y ; Lim y + = = + +) Bảng biến thiên: Ta có : y = 3x 2 3 y = 0 x = -1 hoặc x = 1 Hàm số đồng biến trên mỗi khoảng ( ) ; 1 và ( ) 1;+ , nghịch biến trên khoảng ( -1; 1) Hàm số đạt cực đại tại điểm x = -1, giá trị cực đại của hàm số là y(-1) =3 Hàm số đạt cực tiểu tại điểm x = 1, giá trị cực tiểu của hàm số là y(1) =-1 - Đồ thị + Điểm uốn : Ta có : y = 6x , y" = 0 tại điểm x = 0 và y" đổi dấu từ dơng sang âm khi x qua điểm x = 0 . Vậy U(0 ; 1) là điểm uốn của đồ thị . + Giao điểm với trục tung : (0 ;1) + ĐTHS đi qua các điểm : A(2; 3) , B(1/2; -3/8) C(-2; -1) 0,25 0,25 0,25 0,5 2 0.75đ Để ĐTHS (1) cắt trục hoành tại 3 điểm phân biệt có hoành độ dơng, ta phải có : ( ) ( ) ( ) 1 2 y' 1 2 x x 0 x 0 x 0 y y 0 y 0 0 > > > < < V (I) Trong đó : y = 3( x 2 2mx + m 2 1) y = m 2 m 2 + 1 = 1 > 0 với mọi m y = 0 khi x 1 = m 1 = x CĐ và x 2 = m + 1 = x CT . (I) ( ) ( ) ( ) ( ) 2 2 2 2 m 1 0 m 1 0 3 m 1 2 m 1 m 3 m 2m 1 0 m 1 0 > + > < < + < < 0,25 0,5 Ta có : 2sin 2x 4sin x 1 0. 6 + + = ữ 3 sin2x cos2x + 4sinx + 1 = 0 3 sin2x + 2sin 2 x + 4 sinx = 0 sinx ( 3 cosx + sinx + 2 ) = 0 y y x + + + -1 + 00 - 1 3 -1 6 4 2 -2 -4 -5 5 10 y x N D B C A S M H t f(t) f(t) -1 1/3 1 + 0- 3 1 27 1 . (C 1 ) và (C 2 ) tại H . Hết Cán bộ coi thi không giải thích gì thêm. trờng thpt hậu lộc 2 đáp án đề thi thử đại học lần 1 năm học 2008 - 2009 Môn thi: toán Thời gian làm bài: 180 phút, không. TRƯỜNG THPT H ẬU LỘC 2 ĐỀ THI THỬ ĐẠI HỌC LẦN 1 - NĂM HỌC 2008 - 2009 Môn: TOÁN Thời gian làm bài: 180 phút, không kể thời gian. Điểm I 2.0đ 1 1,25đ Với m = 0 , ta có : y = x 3 3x + 1 - TXĐ: R - Sự biến thi n: + ) Giới hạn : x x Lim y ; Lim y + = = + +) Bảng biến thi n: Ta có : y = 3x 2 3 y = 0 x = -1 hoặc x = 1 Hàm số

Ngày đăng: 11/07/2014, 10:00

w