Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 43 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
43
Dung lượng
599,17 KB
Nội dung
http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến PHẦN 1 THỂ TÍCH KHỐI ĐA DIỆN A. LÝ THUYẾT 1. Khái niệm thể tích của 1 khối đa diện (Sgk hh 12) 2. Các công thức tính thể tích của khối đa diện a) Thể tích khối hộp chữ nhật V = abc với a, b, c là 3 kích thước của khối hộp chữ nhật b) Thể tích của khối chóp V= 3 1 S đáy . h ; h: Chiều cao của khối chóp c) Thể tích của khối lăng trụ V= S đáy . h ; h: Chiều cao của khối lăng trụ B. CÁC DẠNG BÀI TẬP http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến DẠNG 1: TÍNH THỂ TÍCH CỦA KHỐI ĐA DIỆN *Phương pháp: Để tính thể tích của khối đa diện ta có thể: +Áp dụng trực tiếp các công thức tính thể tích +Chia khối đa diện thành các khối nhỏ hơn mà thể tích của các khối đó tính được +Bổ sung thêm bên ngoài các khối đa diện để được 1 khối đa diện có thể tính thể tích bằng công thức và phần bù vào cũng tính được thể tích. *Các bài tập 1)Về thể tích của khối chóp +Nếu khối chóp đã có chiều cao và đáy thì ta tính toán chiều cao, diện tích đáy và áp d ụng công thức :V= 3 1 S đáy . h Bài 1: Tính thể tích hình chóp tam giác đều SABC trong các trường hợp sau: a) Cạnh đáy bằng a, góc ABC = 60 o b) AB = a, SA = l c) SA = l, góc gi ữa mặt bên và mặt đáy bằng ỏ GIẢI: a) Gọi O là tâm ∆ABC đều ⇒ SO ⊥(ABC) S ABC = 2 1 a 2 3a = 4 3 2 a ∆ABC có SA = SB; ABC = 60 o ⇒ SA = AB = SB = a C S A B O a SO ⊥ OA ( vì SO ⊥ (ABC) ) Tam giác vuông SOA có: SO 2 = SA 2 - OA 2 = a 2 - ( 3 2 a 2 3 ) 2 = 2 2 2 3 2 3 a a a ⇒ SO = a 3 2 Vậy VSABC = S∆ABC . SO = 3 1 . 4 3 2 a . a 3 2 . 3 2 2 a l b) Tương tự câu a đáp số: http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến VSABC = 3 1 . 4 3 2 a . 3 2 2 a l c) G ọi O là tâm ∆ABC Gọi A’ là trung điểm BC Dễ thấy ((SBC), (ABC)) = góc SA’O = ỏ Tam giác vuông SOA có: SO 2 = l 2 - OA 2 = l 2 - 9 4 AA’ 2 Tam giác vuông SOA’ có: sin'.sin 3 1 ' 3 1 AASO AA SO (2) T ừ (1) (2) ta có: 2 9 4 2 9 1 sin'.sin' lAAAA O B A' A C a AA’ 2 (sin 2 ỏ + 4) = 9l 2 4sin 3 2 ' l AA S∆ABC = )4(sin2 33 4sin3 3 4sin 3 2 1 2 1 2 2 22 '. l ll BCAA 4sin sin. 4sin 3 3 1 22 sin ll SO ⇒VSABC = 3 1 S∆ABC . SO = 4sin).4(sin sin 3 3 22 2 . l Bài 2. Cho lăng trụ ABCA’B’C’ có độ dài cạnh bên = 2a, ∆ABC vuông tại A, AB = a, AC = a 3 . Hình chiếu vuông góc của A’ trên (ABC) là trung điểm BC. Tính VA’ABC theo a? GIẢI. -Gọi H là trung điểm BC ⇒A’H ⊥ (ABC) (gt) -Ta có S ∆ABC = 3. 2 2 1 2 1 aACAB -Vì A’H ⊥ (ABC) ⇒ A’H ⊥ AH Tam giác vuông A’HA có: A’H 2 = A’A 2 - AH 2 = (2a) 2 - 4 1 .(a 2 + 3a 2 ) hay A’H 2 = 4a 2 - a 2 = 3a 2 ⇒ A’H = a 3 B C H 2a a a 3 C' A' http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến ⇒VA’ABC = 3 1 S∆ABC .A’H = 2 2 2 1 3 1 2 3.3. a aa Bài 3. Hình chóp SABCD có SA ⊥ (ABC), SA = a. ∆ABC vuông cân có AB = BC =a. B’ là trung điểm SB. C’ là chân đường cao hạ từ A của ∆SAC a) tính VSABC b) Chứng minh rằng AB ⊥ (AB’C’). Tính VSAB’C’ GIẢI a) S ∆ABC = 2 2 1 2 1 . aBCBA ; SA =a ⇒ VSABC = 3 1 S∆ABC .SA = 6 1 a 3 a C A a a B' C' B b) ∆SAB có AB = SA = a ⇒∆SAB cân tại A ⇒ AB’ ⊥ SB B’S = B’B BC ⊥ AB ⇒ BC ⊥ (SAB) ⇒ BC ⊥ AB’ BC ⊥ SA ⇒ AB’ ⊥ (SAC) ⇒ AB’ ⊥ SA ⇒SC ⊥ (AB’C’) AC’ ⊥ SC Cách 1 2 2 2 1 2 1 2' a aSBAB Vì AB’ ⊥ (SBC) ⇒AB’ ⊥ B’C’. SC = aACSA 3 22 3 2 ' a SC SA SC B’C’ 2 = SB’ 2 - SC’ 2 = 66 '' 2 aa CB ⇒S∆AB’C’ = 3462 2 1 2 1 2 '''. aaa CBAB ⇒V∆AB’C’ = 363243 1 32 aaa Cách 2 http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến 3 ' ' 1 1 2 3 3 a S B S C S B S C a 3 ' ' 3 3 ' ' ' 1 1 1 ' ' ' 6 6 6 3 6 3 S A B C S A B C a V S A S B S C a S A B C V SA S B S C a V a Bài 4 Hình chóp SABC có SA⊥ (ABC), ∆ABC cân tại A, D là trung điểm BC, AD = a, (SB, (ABC)) = ỏ; (SB, (SAD)) = õ. Tính VSABC. GIẢI Dễ thấy (SB, (ABC)) = ỏ = SBA (SB, (SAD)) = õ = BSD ∆ABC cân ⇒ AD ⊥ BC DB = DC ∆SAB có cos ỏ = SB AB (1) BC ⊥ AD BC ⊥ SA (vì SA⊥ (ABC) ⇒ BC ⊥ (SAD) ⇒ BC ⊥ SD a B A C D S Tam giác vuông SB có sinõ = SB BD (2) T ừ (1) (2) ⇒ sinsincos 22 aAB BDAB ⇒ sin cos 22 2 2 aAB AB ⇒ AB 2 (sin 2 õ – cos 2 ỏ) = -a 2 cos 2 ỏ ⇒ AB = cos 2 sincos 1 22 a S∆SAB =BD.AD = 2 2 2 2 2 2 sin sin cos cos cos cos sin cos sin . . Sin a a ADAB SA = AB. tan ỏ = 22 sincos sin a ⇒ VSABC = 3 1 SA.S∆ABC = 22 sincos sin 3 1 a 22 2 sincos sin a = 22 3 sincos3 cossin a Bài 5 Cho hình vuông ABCD cạnh a. các nửa đường thẳng Ax, Cy ⊥ (ABCD) và ở cùng một phía với mặt phẳng đó. Điểm M không trùng với với A trên Ax, điểm N không trùng với C trên Cy. Đặt AM = m, CN = n. Tính thể tích của hình chóp BAMNC. GIẢI http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến Gọi I là giao điểm của AC và BD Ta có BD ⊥ AC (vì ABCD là hình vuông) (Ax, Cy) ⊥ (ABCD) ⇒ BD ⊥ (AMNC) ⇒ BI ⊥ (AMNC) BI = 2 2 2 a BD x n A D C m B M N Diện tích hình thang AMNC là S = 2 2)( 2 )( . anmCNAM AC VAMNC = )( 62 2 2 2)( 3 1 3 1 2 nmBIS a a anm AMNC *Nếu khối chóp cần tính thể tích chưa bíết chiều cao thì ta phải xác định đựơc vị trí chân đường cao trên đáy. Ta có một số nhận xét sau: -Nếu hình chóp có cạnh bên nghiêng đều trên đáy hoặc các cạnh bên bằng nhau thì chân đường cao là tâm đường tròn ngoại tiếp đáy. -Nếu hình chóp có các mặt bên nghiêng đều trên đáy hoặc có các đường cao của các mặt bên xuất phát từ một đỉnh bằng nhau thì chân đường cao là tâm đường tròn nội tiếp đáy -Hình chóp có mặt bên hoặc mặt mặt chéo vuông góc với đáy thì đường cao của hình chóp là đường cao của mặt bên hoặc mặt chéo đó. -Nếu có một đường thẳng vuông góc với mặt đáy của khối chóp thì đường cao của khối chóp sẽ song song hoặc nằm trờn với đường thẳng đó. -Nếu một đường thẳng nằm trong đáy của khối chóp vuông góc vuông góc với một mặt phẳng chứa đỉnh của khối chóp thì đường cao của khối chóp là đường thẳng kẻ từ đỉnh vuông góc với giao tuyến của mặt đáy và mặt phẳng chứa đỉnh đã nói ở trên. *Nếu khối chóp là khối tứ diện thì ta cần khéo chọn mặt đáy thích hợp. Bài 6: SABCD có đáy là tâm giác cân tại A, BC =a, ABC = ỏ, các cạnh bên nghiêng trên đáy một góc ỏ. Tính VSABC GIẢI http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến A S C B H a - Gọi H là hình chiếu của S lên (ABC) - Vì các c ạnh bên nghiêng đều trên đáy ⇒ H là tâm đường tròn ngoại tiếp ∆ABC. - Ta có: ∆ABC = sin 2 1 ACAB mà BC 2 = 2AB 2 - 2AB 2 cos ỏ = 2AB 2 (1-cos ỏ) = a 2 ⇒ AB = 2 cos1 a ⇒ S∆ABC = 24cos1 sin 22 1 2 2 1 cossin 22 aa AB HA = R = sin2sin2 aBC Tan giác vuông có tan ỏ = AH SH ⇒ SH = cos2sin2 tan aa ⇒VSABC = cos24 cot cos2243 1 3 1 2 3 2 .cot a aa ABC SHS Bài 7: SABC có đáy ABCD là hình bình hành và SABCD = 3 và góc giữa 2 đường chéo = 60 o . các cạnh bên nghiêng đều trên đáy 1 góc 45 o . Tính VSABCD GIẢI A B C O D -Hạ SO ⊥ (ABCD) http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến - Vì khối chóp có các bên nghiêng đều trên đáy. ⇒ O là tâm đường tròn đi qua 4 đỉnh A, B, C, D ⇒ tứ giác ABCD là hình chữ nhật và {O} = AC ∩ BD - Đặt AC = BD =x. Ta có S hcnABCD = 2 1 AC.BD.sin60 o = 3. 2 4 3 2 3 2 2 1 xx ⇒ x=3 - (SA, (ABCD)) = (SA, AO) = SAO = 45 o = SCO = (SC, (ABCD)) ⇒ ∆ASC vuông cân tại S ⇒ SO = 1 2 1 AC ⇒ VSABCD = 3 3 3 1 1.3 Bài 8: SABC có SA = SB = SC = a. ASB = 60 o , BSC = 90 o , CSA = 120 o . a) Ch ứng minh rằng ∆ABC vuông b) Tính VSABC GIẢI a) H B A S C a o ASB SBSA 60 ⇒ AB = a -Tam giác vuông SBC có BC 2 = SB 2 + SC 2 = 2a 2 -∆SAC có AC 2 = a 2 + a 2 -2a 2 cos120 o = 2a 2 - 2a 2 (- 2 1 ) =3a 2 -∆ABC có AC 2 = AB 2 + BC 2 ⇒∆ABC vuông tại B b) Hạ SH ⊥ (ABC) Vì SA = SB = SL HA = HB = HC ⇒ H là trung điểm AC ∆ABC vuông tại B Tam giác vuông SHB có SB = a ⇒ SH 2 = SB 2 - BH 2 = 24 2 aa SH BH = 2 3 2 a AC (Hoặc ∆SAC là nửa đều tam giác đều ⇒ SH = 22 aSA ) ⇒VSABC = 12 2 6 1 2 1 3 1 3 1 23 .2 aa ABC aaSHBCABSHS http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến Bài 9: SABCD có đáy ABCD là hình thang với đáy lớn AB = 2, ACB = 90 o . ∆SAC và ∆SBD là các tam giác đều có cạnh = 3 . Tính th ể tích khối chóp SABCD. Đáp số: V SABCD = 4 6 Bài 10: SABCD có đáy là hình thang vuông tại A và D, ∆SAD đều cạnh = 2a, BC = 3a. Các mặt bên lập với đáy các góc bằng nhau. Tính VSABCD GIẢI 2a 3a C D H K - Hạ SH ⊥ (ABCD), H ∈ (ABCD) - Vì các m ặt bên lập với đáy các góc bằng nhau nên dễ dàng chứng minh được H là tâm đường tròn nội tiếp đáy - Gọi K là hình chiếu của H lên AD - Ta có HK = a AD 2 - Tam giác vuông SHK có HK = a SK = 32 2 3 aa (vì ∆SAD đều) ⇒SH = 23 22 aaa Vì ⋄ABCD ngoại tiếp nên: AB + CD = AD + BC = 5a ⇒SABCD = 2 2 2.5 2 ).( 5a aa ADCDAB ⇒VSABCD = 3 5 2 3 1 3 1 23 2.5. a ABCD aaSHS Bài 11: Cho hình chóp SABCD có ABCD là hình vuông cạnh 2a, SA = a, SB = a 3 , (SAB) (ABCD). M, N lần lượt là trung điểm AB, BC. Tính VSBMDN GIẢI http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến S H 15a 8a A D C B S A D C H B M N ∆SAB hạ SH b AB ⇒SH b (ABCD) ⇒ SH b (BMDN) (SAB) b (ABCD) S ∆CDN = S∆MDA = 4 1 S⋄ABCD ⇒ S⋄BMDN = 2 1 S⋄ABCD = 2 1 2a.2a = 2a 2 ∆SAB có AB 2 = SA 2 + SB 2 = 4a 2 ⇒ SAB vuông tại S ⇒ 222222 3 4 3 11111 aaaSBSASH ⇒ SH = 2 3 a ⇒VSBMDN = 3 1 S⋄BMDN.SH = 2 3 2 3 2 3 1 3 .2 aa a Bài 12: SABCD có ⋄ABCD là hình thang với AB = BC = CD = 2 1 AD. ∆SBD vuông tại S và nằm trong mặt phẳng vuông góc với đáy. SB = 8a, SD = 15a. Tính VSABCD GIẢI -Trong ∆SBD kẻ SH b BD Vì (SBD) b (ABCD) ⇒SH b (ABCD) -Tam giác vuông SBD có 222 111 SDSHSH hay 222 225 1 64 11 aaSH hay aaSH 17 120 289 14400 . -Vì hình thang có AB = BC = CD = 2 1 AD ⇒ D A ˆ ˆ = 60 o , B = C = 120 o -∆SBD có BD 2 = SB 2 +SD 2 =289a 2 ⇒ BD = 17a ∆CBD có BD 2 =2BC 2 (1+ 2 1 ) = 3BC 2 = 289a 2 ⇒ BC = a 3 17 S∆BCD = 12 3289 2 3 2 3 289 2 1 2 2 1 2 120sin a o aBC [...]... ABCA1B1C1 có AB = a, AC = = 2a, AA1 = 2a 5 và BAC = 12 0o Gọi m là trung điểm của cạnh CC1 Chứng minh rằng MB MA1 và tinh khoảng cách d từ điểm A tới mặt phẳng (A1BM) GIẢI z B C A M x y B1 2a C1 A1 Đưa và hệ trục toạ độ A1xyz vuông góc như hình v : gốc toạ độ A1 trục A1Z hướng theo A1 A Trục A1y hướng theo A1C1 Trục A1x tạo với trục Oy góc 90o và nằm trong MP (A1B1C1) Toạ độ các điểm: A1(0 ; 0; 0), B1(... (2) Từ (1) và (2) ta có BCNM là hình chữ nhật Kẻ SH ⊥BM thỡ SH⊥ (BCNM) 1 3 1 3 ⇒VSBCNM= SBCNM.SH= BC.NM.SH= a3 3 Bài 2 1: Cho lăng trụ đứng ABCA1B1C1 có ABC vuông AB = AC = a; AA1 = a 2 M là trung điểm AA1 Tính thể tích lăng trụ MA1BC1 Hướng dẫn: a3 2 12 +Chọn mặt đáy thích hợp ⇒ V = +Có thể dùng cả phương pháp toạ độ Bài 2 2: Tứ diện ABCD có AB = x có các cạnh còn lại bằng 1 a.Tính thể tích tứ diện theo... 8b2 1 ⇒CC’ = 2 2 b =AA’ S∆ABC = 2 CA.CBsin6oo = ⇒VABCA’B’C’ = S∆ABC.AA’ = 6 b3 3b 2 2 http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến DẠNG 2 : TỈ SỐ THỂ TÍCH A/ Phương pháp: Giả sử mặt phẳng ỏ chia khối đa diện thành hai khối có thể tích là V1 và V2 Để tính k = V1 V2 ta có th : -Tính trực tiếp V1, V2 bằng công thức ⇒ k -Tính V2 (hoặc V2) bằng công thức tính thể tích của cả khối. .. tỉ số thể tích hai phần đó (MNB’) chia hình lập phương GIẢI D M C Q P A B C' D' E B' A' Gợi : Gọi V1, V2 tương ứng là thể tích các phần trên và phần dưới thiết diện ta c : V1 = VB’ECF - (VEPD’N + VFMQC) a 3 Để : ED’ = a, FC = , PD’ = 2a a , CQ = 3 4 http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến Tính được V1 = 55a 3 14 4 V2 = V- V1 = a3 - V 55 55a 3 89a 3 = 1 14 4 14 4 V2... với CM a)Tìm giá trị lớn nhất của thể tích khối tứ diện SAHC b)Hạ AI vuông góc với SC,AK vuông góc với SH Tính thể tích khối tứ diện SAKI Đáp số a3 a)Vmax= 12 a 3 sin 2 b)VSAKI = 24 (1 sin 2 ) http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến CÓ THỂ TÍNH THỂ TÍCH KHỐI ĐA DIỆN NHỜ VIỆC CHIA THÀNH CÁC KHỐI NHỎ HOẶC BỔ SUNG THÊM Bài 2 5: Cho tứ diện ABCD có các cặp cạnh đối đôi... tính thể tích của cả khối ⇒ Thể tích V2 (hoặc V1) ⇒ k Ta có các kết quả sau: +Hai khối chóp có cùng diện tích đáy là tỉ số thể tích bằng tỉ số hai đường cao tương ứng +Hai khối chóp có cùng độ dài đường cao thì tỉ số thể tích bằng tỉ số hai diện tích đáy VSABC + VSA ' B 'C ' SA SB SC SA '.SB '.SC ' C' A' C A B' B (chỉ đúng cho khối chóp tam giác (tứ diện) ) B Các bài tập Bài 1: Chóp SABCD có đáy ABCD... AB.BC 1 a tan 60 o.a 1 a 2 3 2 2 2 2 VMABC = 1 S ABC MH 1 1 a 3 a 2 3 3 3 2 Cách 2 VMABC V ASABC SM SB 1 2 VMABC = 1 2 a3 4 VSABC 3 2 mà VSABC = 1 SA.S∆ABC = 1 a 3 1 a 3 1 a 6 3 2 3 2 ⇒VMABC = 1 4 a3 Bài 15 : Hình chóp SABCD có ABCD là hình vuông tâm O, SA (ABCD), AB = a, SA = a 2 H, K lần lượt là hình chiếu vuông góc của A trên SB, SD Chứng minh rằng: SC (AHK) và tính thể tích hình... vuông SBC: cos ỏ = Tam giác vuông SAB: SA2 = SB2 - AB2 = SB2 - BC2 = SB2 - SB2tanỏ V1 V V1 V 2 ( tan ( SB SB1. SA ) ) 2 (cos sin ) 2 1 sin 2 cos V1 V V1 V (1 sin 2 ) V (1 1 sin 2 ) 1 sin22 sin Bài 3: SABCD là hình chóp tứ giác đều cạnh a, đường cao h Mặt phẳng qua AB (SDC) chia chóp làm hai phần Tính tỉ số thể tích hai phần đó Bài 4: Cho hình lập phương ABCDA’B’C’D’... thi trắc nghiệm trực tuyến A' B' D' C' c a M b A B x C D y a) Cách 1: Thể tích của khối hộp ABCDA’B’C’D’ là V = abc 1 3 1 1 3 2 1 6 1 6 VC’CDB = CC '.S BCD c ab abc V Tương tự ta c : VAA’BD = VBA’B’ C’ = VD’A’DC’ = ⇒VA’C’DB = V - 4 1 1 1 V = V= abc 6 3 3 1 V 6 Cách 2: dùng phương pháp toạ độ Chọn hệ toạ độ Axyz như hình vẽ Ta c : A(0; 0; 0), B(a; 0; 0) D( 0; b; 0), C(a; b; c), A’(0; 0; 0) DB =... thiết diện là ngũ giác MNEFI Gọi V1, V2 tương ứng là thể tích phần trên và phần dưới của thiết diện, ta có V1 = VNIBM + VNBB’FI + VNB’C’EF V2 = VNFA’E + VNAA’FI + VNACMI So sánh từng phần tương ứng ta có V1 = V2 V1 V2 =1 Bài 7: Cho hình vuông ABCD cạnh a {O} = AC BD, ox (ABCD) Lấy S Ox, S O Mặt phẳng qua AC và vuông góc (SAD) chia hình chóp thành hai phần Tính tỉ số thể tích của hai phần đó . http://ebook.here.vn Thư viện Bài giảng, Đề thi trắc nghiệm trực tuyến PHẦN 1 THỂ TÍCH KHỐI ĐA DIỆN A. LÝ THUYẾT 1. Khái niệm thể tích của 1 khối đa diện (Sgk hh 12 ) 2. Các công thức tính thể tích. của khối đa diện ta có th : +Áp dụng trực tiếp các công thức tính thể tích +Chia khối đa diện thành các khối nhỏ hơn mà thể tích của các khối đó tính được +Bổ sung thêm bên ngoài các khối đa diện. khối đa diện a) Thể tích khối hộp chữ nhật V = abc với a, b, c là 3 kích thước của khối hộp chữ nhật b) Thể tích của khối chóp V= 3 1 S đáy . h ; h: Chiều cao của khối chóp c) Thể tích của khối