1. Trang chủ
  2. » Giáo án - Bài giảng

03 De va DA Thu DH mon Toan 2010

21 241 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 1,2 MB

Nội dung

Bộ Giáo dục và đào tạo Đề thị thử đại học năm 2010 đề tham khảo Môn: Toán T.g: 180ph Phần bắt buộc. Câu 1.(2 điểm) Cho hàm số 1 12 + = x x y 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số . 2. Tìm tọa độ điểm M sao cho khoảng cách từ điểm )2;1(I tới tiếp tuyến của (C) tại M là lớn nhất . CÂU 2. (2 điểm). 1. Giải phơng trình : 01cossin2sinsin2 2 =++ xxxx . 2. Tìm giá trị của m để phơng trình sau đây có nghiệm duy nhất : 0)23(log)6(log 2 25,0 =++ xxxm CÂU 3 . (1điểm) Tính tích phân: = 2 1 2 2 4 dx x x I . CÂU 4. (1 điểm). Cho tứ diện ABCD có ba cạnh AB, BC, CD đôi một vuông góc với nhau và aCDBCAB === . Gọi C và D lần lợt là hình chiếu của điểm B trên AC và AD. Tính thể tích tích tứ diện ABC D . CÂU 5. (1 điểm) Cho tam giác nhọn ABC , tìm giá trị bé nhất của biểu thức: CBAAS 2cos2coscos23cos +++= . Phần tự chọn (thí sinh chỉ làm một trong hai phần : A hoặc B ) Phần A CÂU 6A. (2 điểm). 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC, với )5;2(,)1;1( BA , đỉnh C nằm trên đờng thẳng 04 = x , và trọng tâm G của tam giác nằm trên đờng thẳng 0632 =+ yx . Tính diện tích tam giác ABC. 2. Trong không gian với hệ tọa độ Oxyz cho hai đờng thẳng d và d lần lợt có phơng trình : d : z y x = = 1 2 và d : 1 5 3 2 2 + == z y x . Chứng minh rằng hai đờng thẳng đó vuông góc với nhau. Viết phơng trình mặt phẳng )( đi qua d và vuông góc với d CÂU7A. (1 điểm) Tính tổng : n n n nnnn CnCCCCS )1()1(432 3210 ++++= Phần B. CÂU 6B. (2 điểm) 1. Trong mặt phẳng tọa độ Oxy cho tam giác ABC, với )2;1(,)1;2( BA , trọng tâm G của tam giác nằm trên đờng thẳng 02 =+ yx . Tìm tọa độ đỉnh C biết diện tích tam giác ABC bằng 13,5 . 2. Trong không gian với hệ tọa độ Oxyz cho hai đờng thẳng d và d lần lợt có phơng trình : d : z y x = = 1 2 và d : 1 5 3 2 2 + == z y x . Viết phơng trình mặt phẳng )( đi qua d và tạo với d một góc 0 30 CÂU7B. (1 điểm) Tính tổng : n nnnn CnCCCS )1(32 210 +++++= ============ Hết =========== Đáp án môn Toán. Câu 1. 1. Tập xác định : 1x . 1 3 2 1 12 + = + = xx x y , 2 )1( 3 ' + = x y , Bảng biến thiên: Tiệm cận đứng : 1=x , tiệm cận ngang 2=y 2. Nếu )( 1 3 2; 0 0 C x xM + thì tiếp tuyến tại M có phơng trình )( )1( 3 1 3 2 0 2 00 xx xx y + = + + hay 0)1(3)2()1()(3 0 2 00 =++ xyxxx . Khoảng cách từ )2;1(I tới tiếp tuyến là ( ) 2 0 2 0 4 0 0 4 0 00 )1( )1( 9 6 )1(9 16 19 )1(3)1(3 ++ + = ++ + = ++ + = x x x x x xx d . Theo bất đẳng thức Côsi 692)1( )1( 9 2 0 2 0 =++ + x x , vây 6d . Khoảng cách d lớn nhất bằng 6 khi ( ) 3131)1( )1( 9 0 2 0 2 0 2 0 ==++= + xxx x . Vậy có hai điểm M : ( ) 32;31 + M hoặc ( ) 32;31 + M CÂU 2. 1) 01cossin)1cos2(sin201cossin2sinsin2 22 =+=++ xxxxxxxx . 22 )3cos2()1(cos8)1cos2( == xxx . Vậy 5,0sin =x hoặc 1cossin = xx . Với 5,0sin =x ta có kx 2 6 += hoặc kx 2 6 5 += Với 1cossin = xx ta có == = 4 sin 2 2 4 sin1cossin xxx , suy ra kx 2 = hoặc kx 2 2 3 += 2) =++ 0)23(log)6(log 2 25,0 xxxm =+ )23(log)6(log 2 22 xxxm += << =+ > 38 13 236 023 2 2 2 xxm x xxxm xx Xét hàm số 13,38)( 2 <<+= xxxxf ta có 82)(' = xxf , 0)(' <xf khi 4>x , do đó )(xf nghịch biến trong khoảng )1;3( , 6)1(,18)3( == ff . Vậy hệ phơng trình trên có nghiệm duy nhất khi 186 << m CÂU 3. Đặt tx sin2 = thì tdtdx cos2 = , khi 1 = x thì 6 =t , khi 2 = x thì 2 =t , vậy: == = 2 1 2 6 2 2 2 2 sin cos4 dt t t dx x x I == 2 6 2 6 2 6 2 )(cot1 sin 1 ttddt t 3 3 CÂU 4. Vì ABCDBCCD , nên )(ABCmpCD và do đó )()( ACDmpABCmp .Vì ACBC ' nên )(ACDmpBC . Suy ra nếu V là thể tích tứ diện ABCD thì ').''( 3 1 BCDACdtV = . Vì tam giác ABC vuông cân nên 2 2 ''' a BCCCAC === . Ta có 2222222 3aCDBCABBDABAD =++=+= nên 3aAD = . Vì BD là đờng cao của tam giác vuông ABD nên 2 '. ABADAD = , Vậy 3 ' a AD = . Ta có 12 2 3 1 3 3 2 2 2 1 '.'. 2 1 sin''. 2 1 )''( 2 aaa AD CD ADACDACADACDACdt ==== . Vậy == 2 2 . 12 2 3 1 2 aa V 36 3 a CÂU 5. CBAAS 2cos2coscos23cos +++= = )cos()cos(2cos23cos CBCBAA +++ . = [ ] )cos(1cos23cos CBAA + . Vì 0)cos(1,0cos > CBA nên AS 3cos , dấu bằng xẩy ra khi 1)cos( = CB hay 2 180 0 A CB == . Nhng 13cos A , dấu bằng xẩy ra khi 0 1803 =A hay A = 0 60 Tóm lại : S có giá trị bé nhất bằng -1 khi ABC là tam giác đều. Phần A (tự chọn) CÂU 6A. 1. Ta có );4( C yC = . Khi đó tọa độ G là 3 2 3 51 ,1 3 421 CC GG yy yx += ++ == + = . Điểm G nằm trên đờng thẳng 0632 =+ yx nên 0662 =+ C y , vậy 2= C y , tức là )2;4(=C . Ta có )1;3(,)4;3( == ACAB , vậy 5 = AB , 10=AC , 5. =ACAB . Diện tích tam giác ABC là ( ) 2510.25 2 1 2 1 2 22 == ACABACABS = 2 15 2.Đờng thẳng d đi qua điểm )0;2;0(M và có vectơ chỉ phơng )1;1;1( u Đờng thẳng d đi qua điểm )5;3;2(' M và có vectơ chỉ phơng )1;1;2(' u Ta có )5;1;2( =MM , [ ] )3;3;0('; =uu , do đó [ ] 012'.'; =MMuu vậy d và d chéo nhau. Mặt phẳng )( đi qua điểm )0;2;0(M và có vectơ pháp tuyến là )1;1;2(' u nên có phơng trình: 0)2(2 =+ zyx hay 022 =+ zyx CÂU 7A. Ta có nn nnnn n xCxCxCCx ++++=+ 2210 )1( , suy ra 132210 )1( + ++++=+ nn nnnn n xCxCxCxCxx . Lấy đạo hàm cả hai vế ta có : =+++ 1 )1()1( nn xnxx nn nnnn xCnxCxCC )1(32 2210 +++++ Thay 1=x vào đẳng thức trên ta đợc S. Phần B (tự chọn) CÂU 6B. 1. Vì G nằm trên đờng thẳng 02 =+ yx nên G có tọa độ )2;( ttG = . Khi đó )3;2( ttAG = , )1;1( =AB Vậy diện tích tam giác ABG là ( ) [ ] 1)3()2(2 2 1 2 1 22 2 22 +== ttABAGABAGS = 2 32 t Nếu diện tích tam giác ABC bằng 13,5 thì diện tích tam giác ABG bằng 5,43:5,13 = . Vậy 5,4 2 32 = t , suy ra 6 = t hoặc 3 = t . Vậy có hai điểm G : )1;3(,)4;6( 21 == GG . Vì G là trọng tâm tam giác ABC nên )(3 BaGC xxxx += và )(3 BaGC yyyy += . Với )4;6( 1 =G ta có )9;15( 1 = C , với )1;3( 2 =G ta có )18;12( 2 = C 2.Đờng thẳng d đi qua điểm )0;2;0(M và có vectơ chỉ phơng )1;1;1( u Đờng thẳng d đi qua điểm )5;3;2(' M và có vectơ chỉ phơng )1;1;2(' u . Mp )( phải đi qua điểm M và có vectơ pháp tuyến n vuông góc với u và 2 1 60cos)';cos( 0 ==un . Bởi vậy nếu đặt );;( CBAn = thì ta phải có : = ++ + =+ 2 1 6 2 0 222 CBA CBA CBA = += +++= += 02 )(632 22 222 CACA CAB CCAAA CAB Ta có 0)2)((02 22 =+= CACACACA . Vậy CA = hoặc CA = 2 . Nếu CA = ,ta có thể chọn A=C=1, khi đó 2=B , tức là )1;2;1(=n và )( mp có phơng trình 0)2(2 =++ zyx hay 042 =++ zyx Nếu CA = 2 ta có thể chọn 2,1 == CA , khi đó 1=B , tức là )2;1;1( =n và )( mp có phơng trình 02)2( = zyx hay 022 =+ zyx CÂU 7B. Ta có nn nnnn n xCxCxCCx ++++=+ 2210 )1( , suy ra 132210 )1( + ++++=+ nn nnnn n xCxCxCxCxx . Lấy đạo hàm cả hai vế ta có : =+++ 1 )1()1( nn xnxx nn nnnn xCnxCxCC )1(32 2210 +++++ Thay 1=x vào đẳng thức trên ta đợc S. S GD&T BC NINH TRNG THPT LNG TI 2 THI TH I HC LN I NM HC 2008 2009 Mụn Toỏn Ngy thi: 01/3/2009 Thi gian lm bi 180 phỳt (khụng k thi gian phỏt ) Phần chung cho tất cả các thí sinh. Câu I (2 điểm) Cho hàm số : 1 2 + = x x y (1) 1.Khảo sát sự biến thiên và vẽ đồ thị hàm số (1). 2.Chứng minh rằng mọi tiếp tuyến của đồ thị (1) đều lập với hai đờng tiệm cận một tam giác có diện tích không đổi. Câu II (2 điểm) 1.Tìm );0( x thoả mãn phơng trình: Cotx 1 = xx x x 2sin 2 1 sin tan1 2cos 2 + + . 2.Tìm m để phơng trình sau có nghiệm: mxxxx =+++ 11 22 Câu III (2 điểm) Trong không gian với hệ toạ độ Oxyz, cho A(a; 0; 0), B(0; b; 0), C(0; 0; c) với a, b, c > 0. 1. Tính khoảng cách từ O đến mp (ABC) 2. Tính thể tích khối đa diện OIBC trong đó I là chân đờng cao kẻ từ C của ABC . Câu IV (2 điểm) 1. Tính tích phân: I = 2 1 10 1 dx x xx 2. Cho x, y, z là các số thực dơng thoả mãn: x + y + z = xyz. Tìm GTNN của A = )1()1()1( zxy zx yzx yz xyz xy + + + + + . Phần riêng. Thí sinh chỉ đợc làm 1 trong 2 câu: V. a hoặc V.b Câu V. a. Dành cho ban Cơ Bản (2 điểm). 1. Giải phơng trình: 25lg)20.155.10lg( +=+ x xx 2.Tính thể tích lăng trụ đều ABC.A ' B ' C ' biết mp(ABC ' ) hợp với đáy góc 60 0 và diện tích tam giác ABC ' bằng 2 3a Câu V. b. Dành cho ban KHTN (2 điểm). 1.Giải bất phơng trình: 32 4 )32()32( 1212 22 ++ + xxxx 2.Cho hình chóp S.ABCD đáy là hình bình hành có AB = a, góc ABC = 30 0 ; hai mặt bên SAD và SBC vuông tại A, C cùng hợp với đáy góc . CMR: (SAC) (ABCD) và tính thể tích khối chóp S.ABCD. Hết Hớng dẫn chấm môn toán Câu ý Nội dung Điểm I 2 1 Khảo sát- vẽ đồ thị (1 điểm) Ta có: 1 3 1 += x y TXĐ: D = R\ {1} Sự biến thiên: + Giới hạn Tiệm cận: += + y x 1 lim = y x 1 lim ĐTHS có tiệm cận đứng: x = 1 1lim = +x y ĐTHS có tiệm cận ngang: y = 1 0,25 + Bảng biến thiên: 'y = 0 )1( 3 2 < x , Dx HS nghịch biến trên các khoảng (- ; 1) và (1; + ) HS không có cực trị 0,5 Đồ thị: KL: Đồ thị hàm số nhận giao hai tiệm cận làm tâm đối xứng. 0,25 2 CMR: Mọi tiếp tuyến diện tích không đổi (1 điểm) Giả sử M + 1 2 ; a a a thuộc đồ thị (1) Tiếp tuyến của (1) tại M: 1 2 ))(( ' + += a a axayy = 2 2 2 )1( 24 )1( 3 + + a aa x a 0,25 TCĐ: x = 1 ( 1 ) ; TCN: y = 1( 1 ) Gọi I là giao 2 tiệm cận I(1; 1) A = d 1 A(1; 1 5 + a a ) ; B = d 2 B(2a-1; 1) 0,25 = 1 6 ;0 a IA IA = 1 6 a ; ( ) 0;22 = aIB IB = 2 1a 0,25 Diện tích IAB : S IAB = IBIA. 2 1 = 6 (đvdt) ĐPCM 0,25 II 2 1 Tìm x );0( thoả mãn pt (1 điểm) ĐK: + 1tan 02sin 0cossin 02sin x x xx x Khi đó pt xxx xx xx x xx cossinsin sincos cos.2cos sin sincos 2 + + = xxxxxx x xx cossinsincossincos sin sincos 22 += 0,25 )2sin1(sinsincos xxxx = 0)1sincos)(sinsin(cos 2 = xxxxx 0,25 0)32cos2)(sinsin(cos =+ xxxx 0sincos = xx tanx = 1 )( 4 Zkkx += (tm) 0,25 ( ) 4 0;0 == xkx KL: 0,25 2 Tìm m để pt có nghiệm (1 điểm) Xét hs: 11)( 22 +++= xxxxxf 12 12 12 12 )(' 22 + ++ + = xx x xx x xf 0,25    ++−=+−+ ≥−+ ⇔= )1()12()1()12( 0)12)(12( 0)(' 2222 xxxxxx xx xf      = − ≤∨≥ ⇔ )(0 2 1 2 1 lx xx Rxf ∈∀>= ,01)0(' ⇒ HS )(xf ®ång biÕn trªn R. 0,25 1)(lim;1)(lim −== −∞→+∞→ xx xfxf 0,25 PT cã nghiÖm khi: -1 < m < 1. 0,25 III 2 1 TÝnh kho¶ng c¸ch tõ O ®Õn (ABC) (1 ®iÓm) PT mp(ABC): 1=++ c z b y a x 0,5 0=−++⇔ abcabzcaybcx O,25 ( ) 222222 )(, accbba abc ABCOd ++ = 0,25 2 TÝnh thÓ tÝch khèi ®a diÖn OIBC (1 ®iÓm) AB = ( ) 0;;ba PTTS của AB: = = = 0z bty atax 0,25 )0;;( btataIABI IC = ( ) cbtaat ;; IC AB IC . AB = 0 22 2 222 0)( ba a ttbaa + ==+ ++ 0;; 22 2 22 2 ba ba ba ab I ( ) 0;0; 00 0 ; 0 00 ; 0 0 , bc b cc b OCOB = = 22 3 ., ba cab OIOCOB + = ( ) 22 3 6 ., 6 1 ba cab OIOCOB V OIBC + = = (đvtt) 0,25 0,25 0,25 IV 2 1 Tính tích phân (1 điểm) Đặt tdtdxxtxt 211 2 === Đổi cận: x = 1 0= t x = 2 1= t 0,25 Khi đó: dt t t t dttt I ++= + = 1 0 2 2 1 0 2 22 9 90 102 9 2)1( 0,25 = 1 0 1 0 3 3 3 ln3010 3 2 + + + t t t t = 2ln30 3 62 2 1 ln30 3 62 =+ 0,5 2 Tìm GTNN (1 điểm) Cách 1: CM: Với mọi a, b > 0 thì + + baba 11 4 11 (1) Dấu = xảy ra ba = 0,25 A = + + + + + ++ xyzzxyzyxyzxzyx 111111 A = ++ + ++ + ++ ++ yxzxzyzyxzyx 2 1 2 1 2 1111 áp dụng (1) ta có: A + + + + + +++++ yxxzzyzyxzyx 111 2 1 2 1 2 1 4 1111 ++= ++++ zyxzyxzyx 111 4 3111 4 1111 CM: Với mọi a, b, c thì: ( ) ( ) cabcabcba ++++ 3 2 (2) Dấu = xảy ra cba == áp dụng (2) ta có: 3.3 111 3 111 2 = ++ = ++ ++ xyz zyx zxyzxyzyx Do x, y, z > 0 nên 3 111 ++ zyx A 4 33 KL: 4 33 min = A đạt đợc khi 3=== zyx Cách 2: A = ++ + ++ + ++ ++ yxzxzyzyxzyx 2 1 2 1 2 1111 Theo CôSi: A ++++ 444 4 1 4 1 4 1111 xyzzxyyzxxyz zyx A ++++++++++ zyxzyxzyxzyx 211121112 16 1111 A ++ zyx 111 4 3 (Cách 1) 0,25 0,25 0,25 V.a Dành cho ban Cơ Bản 2 [...]... AB AC.sin 60 = 4 a 0,25 0,25 SOA vuông tại O: AO = 1 a AC = 2 4 1 4 a tan 4 SO = AO.tan = 1 3 V S ABCD = 3 SO S ABCD = 48 a 3 Bộ Giáo dục và đào tạo đề tham khảo tan (đvtt) Đề thị thử đại học năm 2010 Môn: Toán T.g: 180ph PHN CHUNG CHO TT C CC TH SINH (7 im) Cõu I (2 im) Cho hm s y = f ( x) = mx 3 + 3mx 2 ( m 1) x 1 , m l tham s 1 Kho sỏt s bin thiờn v v th ca hm s trờn khi m = 1 2 Xỏc nh... (2 im) 1 Trong mt phng vi h ta Oxy, cho ng thng d: x 5y 2 = 0 v x 2 + y 2 + 2 x 4 y 8 = 0 Xỏc nh ta cỏc giao im A, B ca ng trũn (C): ng trũn (C) v ng thng d (cho bit im A cú honh dng) Tỡm ta C thuc ng trũn (C) sao cho tam giỏc ABC vuụng B 2 Cho mt phng (P): x 2 y + 2 z 1 = 0 v cỏc ng thng d1 : x 1 2 = y 3 3 = z 2 ; d2 : Tỡm cỏc im x5 y = = z+5 6 4 5 M d1 , N d 2 sao cho MN // (P) v cỏch... + 5 = a + 2b 2c 13 ( loại) a + 2b 2c = 4 (3) a + 2b 2c + 5 = a 2b + 2c + 13 T (1) v (3) suy ra: b = 0,2 17 11a 11 4a ;c = (4) 3 6 3 T (2) v (3) suy ra: a 2 + b2 + c 2 = 9 (5) Th (4) vo (5) v thu gn ta c: ( a 2 ) ( 221a 658 ) = 0 67 658 658 46 ; ; Nh vy a = 2 hoc a = Suy ra: I(2;2;1) v R = 3 hoc I ữ v 221 221 221 221 0,2 R = 3 Vy cú hai mt cu tha món yờu cu vi phng trỡnh ln lt l: 2 2... ta c A(2;0), B(-3;-1) Vỡ ã ABC = 900 nờn AC l ng kớnh ng trũn, tc l im C i xng vi im A qua tõm I ca ng trũn Tõm I(-1;2), suy ra C(-4;4) 2 0,5 1,0 x = 1 + 2t Phng trỡnh tham s ca d1 l: y = 3 3t M thuc d1 nờn ta ca M z = 2t ( 1 + 2t;3 3t; 2t ) Theo : d ( M ,( P) ) = 0,2 |1 + 2t 2 ( 3 3t ) + 4t 1| 12 + ( 2 ) + 22 2 =2 |12t 6 | = 2 12t 6 = 6 t1 = 1, t 2 = 0 3 + Vi t1 = 1 ta c M 1 ( 3;0; . vuông ABD nên 2 '. ABADAD = , Vậy 3 ' a AD = . Ta có 12 2 3 1 3 3 2 2 2 1 '.'. 2 1 sin''. 2 1 )''( 2 aaa AD CD ADACDACADACDACdt ==== . Vậy == 2 2 . 12 2 3 1 2 aa V 36 3 a CÂU. diện ABCD thì ').''( 3 1 BCDACdtV = . Vì tam giác ABC vuông cân nên 2 2 ''' a BCCCAC === . Ta có 2222222 3aCDBCABBDABAD =++=+= nên 3aAD = . Vì BD là đờng. a AC = SO = AO.tan tan 4 1 4 a= tan 48 3 . 3 1 3 . aSO SV ABCDABCDS == (đvtt). Bộ Giáo dục và đào tạo Đề thị thử đại học năm 2010 đề tham khảo Môn: Toán T.g: 180ph PHN CHUNG CHO TT C CC

Ngày đăng: 10/07/2014, 19:00

w