29 TUYN SINH 10 CC TNH THNH (2009-2010)_ (cú ỏp ỏn) phn 2 S GIO DC V O TO QUNG NINH K THI TUYN SINH LP 10 THPT NM HC 2009 - 2010 THI CHNH THC MễN : TON Ngày thi : 29/6/2009 Thời gian làm bài : 120 phút (không kể thời gian giao đề) Chữ ký GT 1 : Chữ ký GT 2 : (Đề thi này có 01 trang) Bài 1. (2,0 điểm) Rút gọn các biểu thức sau : a) 2 3 3 27 300+ b) 1 1 1 : 1 ( 1)x x x x x + ữ Bài 2. (1,5 điểm) a). Giải phơng trình: x 2 + 3x 4 = 0 b) Giải hệ phơng trình: 3x 2y = 4 2x + y = 5 Bài 3. (1,5 điểm) Cho hàm số : y = (2m 1)x + m + 1 với m là tham số và m # 1 2 . Hãy xác định m trong mỗi trờng hơp sau : a) Đồ thị hàm số đi qua điểm M ( -1;1 ) b) Đồ thị hàm số cắt trục tung, trục hoành lần lợt tại A , B sao cho tam giác OAB cân. Bài 4. (2,0 điểm): Giải bài toán sau bằng cách lập phơng trình hoặc hệ phơng trình: Một ca nô chuyển động xuôi dòng từ bến A đến bến B sau đó chuyển động ngợc dòng từ B về A hết tổng thời gian là 5 giờ . Biết quãng đờng sông từ A đến B dài 60 Km và vận tốc dòng nớc là 5 Km/h . Tính vận tốc thực của ca nô (( Vận tốc của ca nô khi nớc đứng yên ) Bài 5. (3,0 điểm) Cho điểm M nằm ngoài đờng tròn (O;R). Từ M kẻ hai tiếp tuyến MA , MB đến đờng tròn (O;R) ( A; B là hai tiếp điểm). a) Chứng minh MAOB là tứ giác nội tiếp. b) Tính diện tích tam giác AMB nếu cho OM = 5cm và R = 3 cm. c) Kẻ tia Mx nằm trong góc AMO cắt đờng tròn (O;R) tại hai điểm C và D ( C nằm giữa M và D ). Gọi E là giao điểm của AB và OM. Chứng minh rằng EA là tia phân giác của góc CED. Hết (Cán bộ coi thi không giải thích gì thêm) Họ và tên thí sinh: . Số báo danh: . Su tm : Gv : Long Chõu Trng THCS Nguyn Trói,Chõu c .AG 1 1 29 TUYN SINH 10 CC TNH THNH (2009-2010)_ (cú ỏp ỏn) phn 2 Đáp án Bài 1 : a) A = 3 b) B = 1 + x Bài 2 : a) x 1 = 1 ; x 2 = -4 b) 3x 2y = 4 2x + y = 5 <=> 3x 2y = 4 7x = 14 x = 2 <=> <=> 4x + 2y = 5 2x + y = 5 y = 1 Bài 3 : a) Vì đồ thị hàm số đi qua điểm M(-1;1) => Tọa độ điểm M phải thỏa mãn hàm số : y = (2m 1)x + m + 1 (1) Thay x = -1 ; y = 1 vào (1) ta có: 1 = -(2m -1 ) + m + 1 <=> 1 = 1 2m + m + 1 <=> 1 = 2 m <=> m = 1 Vậy với m = 1 Thì ĐT HS : y = (2m 1)x + m + 1 đi qua điểm M ( -1; 1) c) ĐTHS cắt trục tung tại A => x = 0 ; y = m+1 => A ( 0 ; m+1) => OA = 1m + cắt truc hoành tại B => y = 0 ; x = 1 2 1 m m => B ( 1 2 1 m m ; 0 ) => OB = 1 2 1 m m Tam giác OAB cân => OA = OB <=> 1m + = 1 2 1 m m Giải PT ta có : m = 0 ; m = -1 Bài 4: Gọi vận tốc thực của ca nô là x ( km/h) ( x>5) Vận tốc xuôi dòng của ca nô là x + 5 (km/h) Vận tốc ngợc dòng của ca nô là x - 5 (km/h) Thời gian ca nô đi xuôi dòng là : 60 5x + ( giờ) Thời gian ca nô đi xuôi dòng là : 60 5x ( giờ) Theo bài ra ta có PT: 60 5x + + 60 5x = 5 <=> 60(x-5) +60(x+5) = 5(x 2 25) <=> 5 x 2 120 x 125 = 0 x 1 = -1 ( không TMĐK) x 2 = 25 ( TMĐK) Vậy vân tốc thực của ca nô là 25 km/h. Bài 5: D C E O M A B Su tm : Gv : Long Chõu Trng THCS Nguyn Trói,Chõu c .AG 2 2 29 TUYN SINH 10 CC TNH THNH (2009-2010)_ (cú ỏp ỏn) phn 2 a) Ta có: MA AO ; MB BO ( T/C tiếp tuyến cắt nhau) => ã ã 0 90MAO MBO= = Tứ giác MAOB có : ã ã MAO MBO+ = 90 0 + 90 0 = 180 0 => Tứ giác MAOB nội tiếp đờng tròn b) áp dụng ĐL Pi ta go vào MAO vuông tại A có: MO 2 = MA 2 + AO 2 MA 2 = MO 2 AO 2 MA 2 = 5 2 3 2 = 16 => MA = 4 ( cm) Vì MA;MB là 2 tiếp tuyến cắt nhau => MA = MB => MAB cân tại A MO là phân giác ( T/C tiếp tuyến) = > MO là đờng trung trực => MO AB Xét AMO vuông tại A có MO AB ta có: AO 2 = MO . EO ( HTL trong vuông) => EO = 2 AO MO = 9 5 (cm) => ME = 5 - 9 5 = 16 5 (cm) áp dụng ĐL Pi ta go vào tam giác AEO vuông tại E ta có:AO 2 = AE 2 +EO 2 AE 2 = AO 2 EO 2 = 9 - 81 25 = 144 25 = 12 5 AE = 12 5 ( cm) => AB = 2AE (vì AE = BE do MO là đờng trung trực của AB) AB = 24 5 (cm) => S MAB = 1 2 ME . AB = 1 16 24 . . 2 5 5 = 192 25 (cm 2 ) c) Xét AMO vuông tại A có MO AB. áp dụng hệ thức lợng vào tam giác vuông AMO ta có: MA 2 = ME. MO (1) mà : ã ã ADC MAC= = 1 2 Sđ ằ AC ( góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn 1 cung) MAC : DAM (g.g) => MA MD MC MA = => MA 2 = MC . MD (2) Từ (1) và (2) => MC . MD = ME. MO => MD ME MO MC = MCE : MDO ( c.g.c) ( ả M chung; MD ME MO MC = ) => ã ã MEC MDO= ( 2 góc tứng) ( 3) Tơng tự: OAE : OMA (g.g) => OA OE = OM OA => OA OE = OM OA = OD OM OE OD = ( OD = OA = R) Ta có: DOE : MOD ( c.g.c) ( à O chong ; OD OM OE OD = ) => ã ã OED ODM= ( 2 góc t ứng) (4) Từ (3) (4) => ã ã OED MEC= . mà : ã ã AEC MEC+ =90 0 ã ã AED OED+ =90 0 => ã ã AEC AED= => EA là phân giác của ã DEC Su tm : Gv : Long Chõu Trng THCS Nguyn Trói,Chõu c .AG 3 3 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 NINH THUẬN MƠN: TỐN ( Thời gian 120 phút, khơng kể thời gian giao đề ) C©u 1. ( 3 ®iĨm ) Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc .AG 4 4 Sở GD & ĐT Bến Tre KỲ THI TUYỂN SINH LƠP 10 THPT Đề khảo sát Môn: Toán Thời gian : 120 phút b ài 1 1) Cho hệ phương trình : =+ =+− 13 52 ymx ymx a) Gi¶i hƯ phương tr×nh khi m = 1 . T×m m ®Ĩ x – y = 2 . 2)Tính 1 20 3 45 125 5 B = + − 3)Cho biĨu thøc : 1 1 1 1 1 A= : 1- x 1 1 1 1x x x x + − + ÷ ÷ + − + − a) Rót gän biĨu thøc A . b) TÝnh gi¸ trÞ cđa A khi x = 7 4 3 + B ài 2 Cho phương trình : 2x 2 + ( 2m - 1)x + m - 1 = 0 a) Giải phương trình khi m= 0 b) T×m m ®Ĩ phương tr×nh cã hai nghiƯm x 1 , x 2 tho¶ m·n 3x 1 - 4x 2 = 11 . c) T×m ®¼ng thøc liªn hƯ gi÷a x 1 vµ x 2 kh«ng phơ thc vµo m . d) Víi gi¸ trÞ nµo cđa m th× phương trình có 2 nghiệm x 1 vµ x 2 cïng dấu . B ài 3: Hai « t« khëi hµnh cïng mét lóc ®i tõ A ®Õn B c¸ch nhau 300 km . ¤ t« thø nhÊt mçi giê ch¹y nhanh h¬n « t« thø hai 10 km nªn ®Õn B sím h¬n « t« thø hai 1 giê . TÝnh vËn tèc mçi xe « t« B ài 4 Cho hàm số y=x 2 có đồ thị (P) và y= 2x+3 có đồ thị là (D) a) Vẽ (P) và (D) trên cùng hệ trục toạ độ vuông góc.Xác đònh toạ độ giao điểm của (P) và (D) b) Viết phương trình đường thẳng (d) cắt (P) tại 2 điểm A và B có hoành độ lần lượt là -2 và 1 B ài 5: Cho hai ®ường trßn (O 1 ) vµ (O 2 ) cã b¸n kÝnh b»ng R c¾t nhau t¹i A vµ B , qua A vÏ c¸t tun c¾t hai đường trßn (O 1 ) vµ (O 2 ) thø tù t¹i E vµ F , đường th¼ng EC , DF c¾t nhau t¹i P . 1) Chøng minh r»ng : BE = BF . 2) Mét c¸t tun qua A vµ vu«ng gãc víi AB c¾t (O 1 ) vµ (O 2 ) lÇn lượt t¹i C,D . Chøng minh tø gi¸c BEPF , BCPD néi tiÕp vµ BP vu«ng gãc víi EF . 3) TÝnh diƯn tÝch phÇn giao nhau cđa hai ®êng trßn khi AB = R . 29 TUYN SINH 10 CC TNH THNH (2009-2010)_ (cú ỏp ỏn) phn 2 Cho biểu thức : A = 1 1 2 : 2 a a a a a a a a a a + + ữ ữ + a) Với những giá trị nào của a thì A xác định . b) Rút gọn biểu thức A . c) Với những giá trị nguyên nào của a thì A có giá trị nguyên . Câu 2. ( 1,5 điểm ) Một ô tô dự định đi từ A đền B trong một thời gian nhất định . Nếu xe chạy với vận tốc 35 km/h thì đến chậm mất 2 giờ . Nếu xe chạy với vận tốc 50 km/h thì đến sớm hơn 1 giờ . Tính quãng đờng AB và thời gian dự định đi lúc đầu . Câu 3. ( 2 điểm ) a) Giải hệ phơng trình : 1 1 3 2 3 1 x y x y x y x y + = + = + b) Giải phơng trình : 2 2 2 5 5 25 5 2 10 2 50 x x x x x x x x + + = + Câu 4. ( 3,5 điểm ) Cho điểm C thuộc đoạn thẳng AB sao cho AC = 10 cm ;CB = 40 cm . Vẽ về cùng một nửa mặt phẳng bờ là AB các nửa đờng tròn đờng kính theo thứ tự là AB , AC , CB có tâm lần lợt là O , I , K . Đờng vuông góc với AB tại C cắt nửa đờng tròn (O) ở E . Gọi M , N theo thứ tự là giao điểm cuae EA , EB với các nửa đờng tròn (I) , (K) . Chứng minh : a) EC = MN . b) MN là tiếp tuyến chung của các nửa đờng tròn (I) và (K) . c) Tính độ dài MN . d) Tính diện tích hình đợc giới hạn bởi ba nửa đờng tròn . sở giáo dục và đào tạo hng yên đề thi chính thức (Đề thi có 02 trang) kỳ thi tuyển sinh và lớp 10 thpt năm học 2009 - 2010 Môn thi : toán Thời gian làm bài: 120 phút phần a: trắc nghiệm khách quan (2,0 điểm) Su tm : Gv : Long Chõu Trng THCS Nguyn Trói,Chõu c .AG 5 5 O A B N D C E F Q M P H 29 TUYN SINH 10 CC TNH THNH (2009-2010)_ (cú ỏp ỏn) phn 2 Từ câu 1 đến câu 8, hãy chọn phơng án đúng và viết chữ cái đứng trớc phơng án đó vào bài làm. Câu 1: Biểu thức 1 2 6x có nghĩa khi và chỉ khi: A. x 3 B. x > 3 C. x < 3 D. x = 3 Câu 2: Đờng thẳng đi qua điểm A(1;2) và song song với đờng thẳng y = 4x - 5 có ph- ơng trình là: A. y = - 4x + 2 B. y = - 4x - 2 C. y = 4x + 2 D. y = 4x - 2 Câu 3: Gọi S và P lần lợt là tổng và tích hai nghiêm của phơng trình x2 + 6x - 5 = 0. Khi đó: A. S = - 6; P = 5 B. S = 6; P = 5 C. S = 6; P = - 5 D. S = - 6 ; P = - 5 Câu 4: Hệ phơng trình 2 5 3 5 x y x y + = = có nghiệm là: A. 2 1 x y = = B. 2 1 x y = = C. 2 1 x y = = D. 1 2 x y = = Câu 5: Một đờng tròn đi qua ba đỉnh của một tam giác có độ dài ba cạnh lần lợt là 3cm, 4cm, 5cm thì đờng kính của đờng tròn đó là: A. 3 2 cm B. 5cm C. 5 2 cm D. 2cm Câu 6: Trong tam giác ABC vuông tại A có AC = 3, AB = 3 3 thì tgB có giá trị là: A. 1 3 B. 3 C. 3 D. 1 3 Câu 7: Một nặt cầu có diện tích là 3600 cm 2 thì bán kính của mặt cầu đó là: A. 900cm B. 30cm C. 60cm D. 200cm Câu 8: Cho đờng tròn tâm O có bán kính R (hình vẽ bên). Biết ã 0 120=COD thì diện tích hình quạt OCmD là: A. 2 3 R B. 4 2 R C. 2 3 2 R D. 3 2 R phần b: tự luận (8,0 điểm) Bài 1: (1,5 điểm) a) Rút gọn biểu thức: A = 27 12 b) Giải phơng trình : 2(x - 1) = 5 Bài 2: (1,5 điểm) Cho hàm số bậc nhất y = mx + 2 (1) a) Vẽ đồ thị hàm số khi m = 2 b) Tìm m để đồ thị hàm số (1) cắt trục Ox và trục Oy lần lợt tại A và B sao cho tam giác AOB cân. Bài 3: (1,0 điểm) Một đội xe cần chở 480 tấn hàng. Khi sắp khởi hành đội đợc điều thêm 3 xe Su tm : Gv : Long Chõu Trng THCS Nguyn Trói,Chõu c .AG 6 6 120 0 O D C m 29 TUYN SINH 10 CC TNH THNH (2009-2010)_ (cú ỏp ỏn) phn 2 nữa nên mỗi xe chở ít hơn dự định 8 tấn. Hỏi lúc đầu đội xe có bao nhiêu chiếc? Biết rằng các xe chở nh nhau. Bài 4: (3,0 điểm) Cho A là một điểm trên đờng tròn tâm O, bán kính R. Gọi B là điểm đối xứng với O qua A. Kẻ đờng thẳng d đi qua B cắt đờng tròn (O) tại C và D ( d không đi qua O, BC < BD). Các tiếp tuyến của đờng tròn (O) tại C và D cắt nhau tại E. Gọi M là giao điểm của OE và CD. Kẻ EH vuông góc với OB (H thuộc OB). Chứng minh rằng: a) Bốn điểm B, H, M, E cùng thuộc một đờng tròn. b) OM.OE = R 2 c) H là trung điểm của OA. Lời giải: Gọi giao của BO với đờng tròn là N, Giao của NE với (O) là P, giao của AE với (O) là Q, giao của EH với AP là F. Ta có góc ã 0 90APN = góc nội tiếp chắn nửa đờng tròn suy ra F là trực tâm tam giác AEN suy ra NF vuông góc với AE. Mặt khác NQ AE suy ra NQ và NF trùng nhau. Suy ra ba điểm N, F, Q thẳng hàng. Mặt khác ta có: góc QEF = góc FNH, góc AEF = góc ABF (góc nội tiếp cùng chắn cung AF). Do đó góc FBH = góc FNH suy ra tam giác BNF cân tại F, suy ra BH = HN, mà AB = ON do đó AH = HO. Hay H là trung điểm của AO Bài 5: (1, 0 điểm) Cho hai số a,b khác 0 thoả mãn 2a 2 + 2 2 1 4 + b a = 4(1) Tìm giá trị nhỏ nhất của biểu thức S = ab + 2009. Lời giải: Ta có (1) tơng đơng với; (a-1/a) 2 +(a+b/2) 2 ab 2 =0 Suy ra: ab = (a-1/a) 2 +(a+b/2) 2 2 -2 (vì (a-1/a) 2 +(a+b/2) 2 0) Dấu = xảy ra khi và chỉ khi (a=1;b=2) hoặc (a=-1;b=-2) Suy ra minS = -2 + 2009 =2007 khi và chỉ khi (a=1;b=2) hoặc (a=-1;b=-2) ===Hết=== S GIO DC&O TO K THI TUYN SINH VO LP 10 TNH B RA VNG TU Nm hc 2009-2010 CHNH THC Ngy thi : 02 07 2009 Mụn thi: Toỏn Thi gian lm bi : 120 phỳt Bi 1 ( 2 im ) a/ Gii phng trỡnh: 2x 2 3x 2 = 0 Su tm : Gv : Long Chõu Trng THCS Nguyn Trói,Chõu c .AG 7 7 D C M y x O B A 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 b/ Giải hệ phương trình: =− =+ 123 532 yx yx Bài 2 ( 2 điểm) Cho hàm số y = 2 2 3 x có đồ thị là parabol (P) và hàm số y = x + m có đồ thị là đường thẳng (D) . a/ Vẽ parabol (P) b/ Tìm giá trị của m để (D) cắt (P) tại hai điểm phân biệt. Bài 3 (2,5 điểm) a/ Rút gọn biểu thức : M = ( ) ( ) x xx 21 23 22 + −−+ ( x ≥ 0) b/ Tìm giá trị của k để phương trình x 2 – (5 + k)x + k = 0 có hai nghiệm x 1 , x 2 thoả mãn điều kiện x 1 2 + x 2 2 = 18 Bài 4 ( 3 điểm) Cho nửa đường tròn tâm O có đường kính AB = 2R. Ax, By là các tia vuông góc với AB ( Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thay đổi trên nửa đường tròn ( M khác A, B), kẻ tiếp tuyến với nửa đường tròn lần lượt cắt Ax, By tại C và D. a/ Chứng minh tứ giác ACMO nội tiếp. b/ Chứng minh OC vuông góc với OD và 222 111 RODOC =+ c/ Xác định vị trí của M để ( AC + BD ) đạt giá trị nhỏ nhất Bài 5 ( 0,5 điểm) Cho a + b , 2a và x là các số nguyên. Chứng minh y = ax 2 + bx + 2009 nhận giá trị nguyên. HẾT GỢI Ý ĐÁP ÁN (Câu khó) Bài 4: a. Xét tứ giác ACMO có · · 0 90CAO CMO= = => Tứ giác ACMO nội tiếp. b. Vì AC và CM là tiếp tuyến của (O) =>OC là tia phân giác của góc AOM (t/c) Tương tự DM và BD cũng là tiếp tuyến của (O) => OD là tia phân giác của góc BOM (t/c) Mặt khác · AOM kề bù với · BOM => CO ⊥OD. Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc .AG 8 8 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 * Ta có ∆COD vuông tại O và OM là đường cao => theo hệ thức lượng trong tam giác vuông ta được 2 2 2 2 1 1 1 1 OC OD OM R + = = c. Vì Ax, By, CD là các tiếp tuyến cắt nhau tại C và D nên ta có CA = CM , MD = DB => AC + BD = CM + MD = CD Để AC + BD nhỏ nhất thì CD nhỏ nhất. Mà C, D thuộc hai đường thẳng // => CD nhỏ nhất khi CD⊥ Ax và By => M là điểm chính giữa cung AB. Bài 5: Vì a+b, 2a ∈Z => 2(a+b) – 2a ∈ Z => 2b ∈ Z Do x ∈ Z nên ta có hai trường hợp: * Nếu x chẵn => x = 2m (m∈ Z) => y = a.4m 2 + 2m.b +2009 = (2a).2m 2 +(2b).m +2009 ∈Z. * Nếu x lẻ => x = 2n +1 (n∈Z) => y = a(2n+1) 2 + b(2n+1) +2009 = (2a).(2m 2 + 2m) + (2b)m + (a + b) + 2009 ∈Z. Vậy y = ax 2 + bx +2009 nhận giá trị nguyên với đk đầu bài. SỞ GIÁO DỤC & ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 TP ĐÀ NẲNG Khóa ngày 23 tháng 06 năm 2009 MÔN: TOÁN ( Thời gian 120 phút, không kể thời gian giao đề ) Bài 1. ( 3 điểm ) Cho biểu thức a 1 1 2 K : a 1 a 1 a a a 1 = − + ÷ ÷ − − − + a) Rút gọn biểu thức K. b) Tính giá trị của K khi a = 3 + 2 2 c) Tìm các giá trị của a sao cho K < 0. Bài 2. ( 2 điểm ) Cho hệ phương trình: mx y 1 x y 334 2 3 − = − = a) Giải hệ phương trình khi cho m = 1. b) Tìm giá trị của m để phương trình vô nghiệm. Bài 3. ( 3,5 điểm ) Cho đường tròn (O), đường kính AB cố định, điểm I nằm giữa A và O sao cho AI = 2 3 AO. Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E. Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc .AG 9 9 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 a) Chứng minh tứ giác IECB nội tiếp được trong một đường tròn. b) Chứng minh ∆AME ∆ACM và AM 2 = AE.AC. c) Chứng minh AE.AC - AI.IB = AI 2 . d) Hãy xác định vị trí của điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất. Bài 4. ( 1,5 điểm ) Người ta rót đầy nước vào một chiếc ly hình nón thì được 8 cm 3 . Sau đó người ta rót nước từ ly ra để chiều cao mực nước chỉ còn lại một nửa. Hãy tính thể tích lượng nước còn lại trong ly. ĐÁP ÁN ĐỀ SỐ 1. Bài 1. a) Điều kiện a > 0 và a ≠ 1 (0,25đ) a 1 1 2 K : a 1 a( a 1) a 1 ( a 1)( a 1) = − + ÷ ÷ − − + + − a 1 a 1 : a( a 1) ( a 1)( a 1) − + = − + − a 1 a 1 .( a 1) a( a 1) a − − = − = − b) a = 3 + 2 2 = (1 + 2 ) 2 a 1 2⇒ = + 3 2 2 1 2(1 2) K 2 1 2 1 2 + − + = = = + + c) a 1 0 a 1 K 0 0 a 0 a − < − < ⇔ < ⇔ > a 1 0 a 1 a 0 < ⇔ ⇔ < < > Bài 2. a) Khi m = 1 ta có hệ phương trình: x y 1 x y 334 2 3 − = − = Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc .AG 10 10 [...]... Đốc AG thÝ 29 30 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 SỞ GD & ĐT TRÀ VINH * Đề chính thức KỲ THI TUYỂN SINH VÀO LỚP 10 PTDTNT NĂM HỌC 2009-2010 THỜI GIAN LÀM BÀI : 90 PHÚT Thí sinh làm tất cả các câu hỏi sau đây : Câu 1 : (2.5đ) Cho phương trình : x 2 –- (2m + 1)x + m 2 –- m –- 10 = 0 (1) 1/ Giải phương trình (1) khi m = 1 2/ Tìm giá trò của m để phương trình (1) có nghiệm... R -Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc AG 12 13 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 GIẢI ĐỀ THI Bài 1: 2x − 3y = 4 1 Giải hệ phương trình: 3x + 3y = 1 ⇔ 2x − 3y = 4 ⇔ 5x = 5 −2 y = 3 x = 1 2 Giải phương trình: a) x 2 − 8x + 7 = 0 Có dạng : a + b + c = 1 +(-8) + 7 = 0 x = 1 ⇒ 1 x 2 = 7 b) 16x + 16 − 9x + 19 + 4x... Trường THCS Nguyễn Trãi,Châu Đốc AG C ED A B O 13 14 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 · · ODB = OBD (∆OBD can ) · · ⇒ ODB = EBF va so le trong · · 2) EBF = CBD (tia phan giac) ⇒ OD//BC · · ADB = ACB = 900 (góc nội tiếp chắn nữa đường tròn) * ∆vAEB, đường cao AD: Có AB2 = BD.BE (1) * ∆vAFB, đường cao AC: Có AB2 = BC.BF (2) Từ (1) và (2) ⇒ BD.BE = BC.BF 3)... thoi ⇒ OA = AD = DC = CO ⇒ ∆OCD đều F · ⇒ ABC = 600 * S hình thoi = AC OD = R 2 + (2R )2 R = R 2 5 - E D A Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc AG C O B 14 15 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 SỞ GIÁO DỤC & ĐÀO TẠO BÌNH PHƯỚC TỐN KỲ THI TUYỂN SINH VÀO LỚP 10 MƠN: ( Thời gian 120 phút, khơng kể thời gian giao đề ) Bµi 1: ( 2,5 ®iĨm ) TÝnh... rằng ít nhất 1 trong hai phương trình sau phải có nghiệm: x2+bx+c=0 (1) ; x2+cx+b=0 (2) Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc AG 18 19 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 ĐÁP ÁN : Câu 1: (2đ) 1 128 + 300 2 1 = 2.2 2 − 3.3 3 − 8 2 + 10 3 2 = 3 A = 2 8 − 3 27 − b/Giải phương trình: 7x2+8x+1=0 (a=7;b=8;c=1) Ta có a-b+c=0 nên x1=-1; x2 = − c −1 = a 7 Câu... Long Châu Trường THCS Nguyễn Trãi,Châu Đốc AG 19 20 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 a/ Tứ giác BCFD là tứ giác nội tiếp · ADB = 900 (góc nội tiếp chắn nửađường tròn (o)) · FHB = 900 ( gt ) · => · ADB + FHB = 900 + 900 = 1800 Vậy Tứ giác BCFD nội tiếp được b/ED=EF Xét tam giác EDF có 1 · EFD = sd ( » + PD ) (góc có đỉnh nằm trong đường tròn (O)) AQ » 2 1 · EDF = sd... nhá nhÊt Hä vµ tªn sinh: Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc AG thÝ 28 29 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 SỞ GIÁO DỤC & ĐÀO TẠO ĐIỆN BIÊN KỲ THI TUYỂN SINH VÀO LỚP 10 MƠN: TỐN ( Thời gian 120 phút, khơng kể thời gian giao đề ) C©u 1: ( 3 ®iĨm ) Gi¶i c¸c ph¬ng tr×nh: a) 3x2 – 48 = 0 b) x2 – 10 x + 21 = 0 c) 8 20 +3= x −5 x−5 C©u... O1, bán kính O1M Bài 4 (2 điểm) Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc AG 11 12 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 Phần nước còn lại tạo thành hình nón có chiều cao bằng một nửa chiều cao của hình nón do 8cm3 nước ban đầu tạo thành Do đó phần nước còn lại có thể tích 3 1 1 bằng ÷ = thể tích nước ban đầu Vậy trong ly còn lại 1cm3 nước 2 8 …………………………... Sè b¸o danh: Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc AG 16 17 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 SỞ GIÁO DỤC & ĐÀO TẠO HỊA BÌNH KỲ THI TUYỂN SINH VÀO LỚP 10 MƠN: TỐN ( Thời gian 120 phút, khơng kể thời gian giao đề ) C©u 1: ( 3 ®iĨm ) 1.Giải hệ phương trình sau: 3 1 − x 2 − y = 2 b) 2 − 1 =1 x 2 − y 2x − 3y =... hai tam giác: EDQ;EDP có µ E chung µ ¶ » Q1 = D1 (cùng chắn PD ) => ∆ EDQ ∆ EPD=> ED EQ = => ED 2 = EP.EQ EP ED Câu 5: (1đ) 1 b 1 c 1 2 + = => 2(b+c)=bc(1) x2+bx+c=0 (1) Có ∆ 1=b2-4c x2+cx+b=0 (2) Có ∆ 2=c2-4b Cộng ∆ 1+ ∆ 2= b2-4c+ c2-4b = b2+ c2-4(b+c)= b2+ c2-2.2(b+c)= b2+ c2-2bc=(b-c) ≥ 0 (thay2(b+c)=bc ) Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc AG 20 21 29 đề TUYỂN SINH 10 CÁC . : Long Chõu Trng THCS Nguyn Trói,Chõu c .AG 12 12 Đề thi chính thức 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 GIẢI ĐỀ THI Bài 1: 1. Giải hệ phương trình: 2 3 4 2 3 4 3. tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc .AG 8 8 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần 2 * Ta có ∆COD vuông tại O và OM là đường cao => theo hệ thức lượng. 1 ta có hệ phương trình: x y 1 x y 334 2 3 − = − = Sưu tầm : Gv : Long Châu Trường THCS Nguyễn Trãi,Châu Đốc .AG 10 10 29 đề TUYỂN SINH 10 CÁC TỈNH THÀNH (2009-2010)_ (có đáp án) phần