UBND TỈNH TIỀN GIANG CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM SỞ GIÁO DỤC VÀ ĐÀO TẠO Độc lập _Tự Do_Hạnh Phúc KỲ THI TUYỂN SINH VÀO LỚP 10 CHUYÊN Khoá ngày: 01-7-2009 Môn thi: TOÁN (Chuyên toán) Thời gian làm bài: 150 phút (không kể thời gian giao đề) Bài 1: 1/ Giải phương trình: 4 3 2 t 4t 5t 4t 1 0− + − + = 2/ Tìm giá trị nhỏ nhất của biểu thức: P x x 2009= − − Bài 2: 1/ Trong mặt phẳng tọa độ Oxy cho các đường thẳng GP: x - 2y + 1 = 0, HP: 3x - 4y + 1 = 0 và I(4; 3) là trung điểm của đoạn HG. Viết phương trình cạnh HG. 2/ Giải hệ phương trình: 3 x 5y 9 0 2x y 7 0 + + = − − = Bài 3: 1/ Cho phương trình ( ) 2 2 x 2m 3 x m 3m 0− − + − = . Định m để phương trình có hai nghiệm 1 2 x ,x sao cho 2 1 2 x 2x+ đạt giá trị nhỏ nhất. 2/ Trong mặt phẳng tọa độ Oxy cho parabol (P): 2 y x= . Gọi A, B là các giao điểm của đường thẳng (d): y mx 1= + với (P). Tìm các giá trị của m để đoạn thẳng AB có độ dài ngắn nhất. Bài 4: Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Điểm E di động trên cung nhỏ BC (E không trùng với B và C) 1/ Trên đoạn EA lấy đoạn EM = EB. Chứng minh rằng điểm M di động trên một cung tròn cố định. 2/ Gọi K là giao điểm của BM và CD. Chứng minh rằng bốn điểm A, M, K, D cùng nằm trên một đường tròn. Bài 5: 1/ Tìm số tự nhiên có hai chữ số, sao cho tích của số đó với tổng các chữ số của nó bằng tổng lập phương của hai chữ số đó. 2/ Một dãy số có số hạng đầu là 16, còn số hạng đứng sau đều do chèn số 15 vào giữa số hạng liền trước, tức là: 16, 1156, 111556… Chứng minh rằng mọi số hạng của dãy này đều là số chính phương. Hết *Ghi chú: Thí sinh được sử dụng các loại máy tính cầm tay do BGD&ĐT cho phép. Thí sinh không được sử dụng tài liệu. Giám thị không giải thích gì thêm. Họ và tên thí sinh: Số báo danh: Chữ kí của giám thị 1: Chữ kí của giám thị 2: Đề chính thức . Do_Hạnh Phúc KỲ THI TUYỂN SINH VÀO LỚP 10 CHUYÊN Khoá ngày: 01-7-2009 Môn thi: TOÁN (Chuyên toán) Thời gian làm bài: 150 phút (không kể thời gian giao đề) Bài 1: 1/ Giải phương trình: 4 3. số hạng đầu là 16, còn số hạng đứng sau đều do chèn số 15 vào giữa số hạng liền trước, tức là: 16, 1156, 111556… Chứng minh rằng mọi số hạng của dãy này đều là số chính phương. Hết *Ghi chú: Thí. thích gì thêm. Họ và tên thí sinh: Số báo danh: Chữ kí của giám thị 1: Chữ kí của giám thị 2: Đề chính thức