1. Trang chủ
  2. » Giáo án - Bài giảng

ĐỀ + ĐA THI THỬ T6/2010

6 253 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 356 KB

Nội dung

TRUNG TM LUYN THI CHT LNG CAO THNH CễNG QUNG NINH THI TH I HC NM 2010 Mụn Toỏn - Khi A, B ( T6) I. PHN CHUNG CHO TT C TH SINH (7,0 im) Cõu I (2,0 im) Cho hàm số y=-x 3 +3x 2 -2 (C) 1. Khảo sát sự biến thiên và vẽ đồ thị (C). 2. Tìm trên đờng thẳng (d): y=2 các điểm kẻ đợc ba tiếp tuyến đến đồ thị (C ). Cõu II (2,0 im) 1. Gii bt phng trỡnh 2 2 2 3 5 4 6x x x x x + ( x R). 2. Gii phng trỡnh 3 2 2 cos2 sin 2 cos( ) 4sin( ) 0 4 4 x x x x + + + = . Cõu III (1,0 im) Tớnh tớch phõn 3 2 2 1 log 1 3ln e x I dx x x = + Cõu IV(1,0 im) Cho hỡnh lng tr ABC.ABC cú ỏy l tam giỏc u cnh a, hỡnh chiu vuụng gúc ca A lờn mt phng (ABC) trựng vi tõm O ca tam giỏc ABC. Tớnh th tớch khi lng tr ABC.ABC bit khong cỏch gia AA v BC l a 3 4 Cõu V (1,0 im) Cho x, y, z 0 tho món x + y + z > 0. Tỡm giỏ tr nh nht ca biu thc ( ) 3 3 3 3 16x y z P x y z + + = + + II. PHN RIấNG (3,0 im) Thớ sinh ch c lm mt trong hai phn (phn A hoc B) A.Theo chng trỡnh Chun Cõu VI.a( 2,0 im) 1.Trong mt phng vi h ta Oxy cho hai ng thng : 3 8 0x y+ + = , ':3 4 10 0x y + = v im A(-2 ; 1). Vit phng trỡnh ng trũn cú tõm thuc ng thng , i qua im A v tip xỳc vi ng thng . 2.Trong khụng gian vi h ta Oxyz, cho hai ng thng d 1 : 1 1 1 2 1 1 x y z+ = = ; d 2 : 1 2 1 1 1 2 x y z + = = v mt phng (P): x - y - 2z + 3 = 0. Vit phng trỡnh chớnh tc ca ng thng , bit nm trờn mt phng (P) v ct hai ng thng d 1 , d 2 . Cõu VII.a (1,0 im) Gii phng trỡnh sau trờn tp s phc z 4 z 3 + 6z 2 8z 16 = 0 B. Theo chng trỡnh Nõng cao. Cõu VI.b(2,0 im) 1. Trong h ta Oxy, cho hai ng trũn (C 1 ): x 2 + y 2 4 y 5 = 0 v (C 2 ): x 2 + y 2 - 6x + 8y + 16 = 0 Lp phng trỡnh tip tuyn chung ca (C 1 ) v (C 2 ) 2.Vit phng trỡnh ng vuụng gúc chung ca hai ng thng sau: 1 2 x 1 2t x y 1 z 2 d : ; d : y 1 t 2 1 1 z 3 = + + = = = + = Cõu VII.b (1,0 im) Gii h phng trỡnh ( ) 1 4 4 2 2 1 log log 1 ( , ) 25 y x y x y x y = + = Ă Ht Thớ sinh khụng c s dng ti liu, cỏn b coi thi khụng gii thớch gỡ thờm. H v tờn thớ sinh: S bỏo danh: GV: Hong Khc Li - 0915.12.45.46 ĐÁP ÁN CHI TIẾT ĐỀ THI THỬ THÁNG 6 Câu Ý Nội dung Điểm I 1 *Tập xác định: D = R * y’ = - 3x 2 + 6x ; y’ = 0 ⇔ 0 2 x x =   =  *Bảng biến thiên x -∞ 0 3 + ∞ y’ - 0 + 0 - + ∞ 2 y -2 -∞ * Hàm số nghịch biến trên ( - ∞ ;1) và ( 3; + ∞ ); đồng biến trên ( 1; 3) * Hàm số đạt cực tiểu tại x = 0 và y CT = -2; hàm số đạt cực đại tại x = 2 và y CĐ = 2 * Đồ thị : f(x)=-x^3+3x^2-2 -4 -3 -2 -1 1 2 3 4 -4 -2 2 4 x y 1đ 2 (1,0 điểm): Gọi M ( )d ∈ ⇒ M(m;2). Gọi ∆ là đường thẳng đi qua điểm M và có hệ số góc k ⇒ PTĐT ∆ có dạng : y=k(x-m)+2. ĐT ∆ là tiếp tuyến của (C ) khi và chỉ khi hệ PT sau có nghiệm 3 2 2 3 2 ( ) 2 (1) 3 6 (2) x x k x m x x k  − + − = − +   − + =   (I). Thay (2) và (1) được: 2x 3 -3(m+1)x 2 +6mx-4=0 ⇔ (x-2)[2x 2 -(3m-1)x+2]=0 2 2 2 (3 1) 2 0 (3) x x m x =  ⇔  − − + =  . Đặt f(x)=VT(3) Từ M kẻ được 3 tiếp tuyến đến đồ thị ( C) ⇔ hệ (I) có 3 nghiệm x phân biệt ⇔ PT(3) có hai nghiệm phan biệt khác 2 0 1 hoÆc m>5/3 (2) 0 m 2 m f ∆ > < −   ⇔ ⇔   ≠ ≠   . Vậy M(m;2) thuộc (d): y=2 với 1 hoÆc m>5/3 m 2 m < −   ≠  thì từ M kẻ được 3 tiếp tuyến đến (C) 0,25 0,25 0,25 0,25 GV: Hoàng Khắc Lợi - 0915.12.45.46 II 1 Điều kiện 2 2 2 0 0 2 5 4 6 0 x x x x x x  − − ≥  ≥ ⇔ ≥   − − ≥  Bình phương hai vế ta được 2 6 ( 1)( 2) 4 12 4x x x x x+ − ≤ − − 3 ( 1)( 2) 2 ( 2) 2( 1)x x x x x x⇔ + − ≤ − − + ( 2) ( 2) 3 2 2 1 1 x x x x x x − − ⇔ ≤ − + + Đặt ( 2) 0 1 x x t x − = ≥ + ta được bpt 2 2 3 2 0t t− − ≥ 1 2 2 2 t t t −  ≤  ⇔ ⇔ ≥  ≥  ( do 0t ≥ ) Với 2 ( 2) 2 2 6 4 0 1 x x t x x x − ≥ ⇔ ≥ ⇔ − − ≥ + 3 13 3 13 3 13 x x x  ≤ − ⇔ ⇔ ≥ +  ≥ +   ( do 2x ≥ ) Vậy bpt có nghiệm 3 13x ≥ + 0,5 0,5 2 3 2 2 cos2 sin2 cos( ) 4sin( ) 0 4 4 x x x x π π + + − + = ⇔ 3 3 2 2 cos2 sin 2 (cos .cos sin sin ) 4(sin cos cos sin ) 0 4 4 4 4 x x x x x x π π π π + − − + = ⇔ 4cos2x-sin2x(sinx+cosx)-4(sinx+cosx)=0 ⇔ (sinx+cosx)[4(cosx-sinx)-sin2x-4]=0 sinx+cosx=0 (2) 4(cosx-sinx)-sin2x-4=0 (3)  ⇔   . PT (2) có nghiệm 4 x k π π = − + . Giải (2) : Đặ s inx-cosx= 2 sin( ), §iÒu kiÖn t 2 (*) 4 t x π = − ≤ 2 sin 2 1x t ⇒ = − , thay vào (2) được PT: t 2 -4t-5=0 ⇔ t=-1( t/m (*)) hoặc t=5(loại ) Với t=-1 ta tìm được nghiệm x là : 3 2 hoÆc x= 2 2 x k k π π π = + . KL: Họ nghiệm của hệ PT là: 4 x k π π = − + , 3 2 vµ x= 2 2 x k k π π π = + 0,25 0,25 0.25 0,25 III 3 3 2 2 3 2 2 2 1 1 1 ln log 1 ln . ln ln 2 . ln 2 1 3ln 1 3ln 1 3ln e e e x x x xdx I dx dx x x x x x x    ÷   = = = + + + ∫ ∫ ∫ Đặt 2 2 2 1 1 1 3ln ln ( 1) ln . 3 3 dx x t x t x tdt x + = ⇒ = − ⇒ = . Đổi cận … Suy ra ( ) ( ) 2 2 2 3 2 2 3 3 2 1 1 1 1 1 log 1 1 1 3 . 1 ln 2 3 9ln 2 1 3ln e t x I dx tdt t dt t x x − = = = − + ∫ ∫ ∫ 2 3 3 3 1 1 1 4 9ln 2 3 27ln 2 t t   = − =  ÷   0,5 0,5 GV: Hoàng Khắc Lợi - 0915.12.45.46 IV Gọi M là trung điểm BC ta thấy:    ⊥ ⊥ BCOA BCAM ' )'( AMABC ⊥⇒ Kẻ ,'AAMH ⊥ (do A∠ nhọn nên H thuộc trong đoạn AA’.) Do BCHM AMAHM AMABC ⊥⇒    ∈ ⊥ )'( )'( .Vậy HM là đọan vơng góc chung của AA’và BC, do đó 4 3 )BC,A'( aHMAd == . Xét 2 tam giác đồng dạng AA’O và AMH ta có: AH HM AO OA = ' ⇔ suy ra 3 a a3 4 4 3a 3 3a AH HM.AO O'A === Thể tích khối lăng trụ: 12 3a a 2 3a 3 a 2 1 BC.AM.O'A 2 1 S.O'AV 3 ABC ==== 0,5 0,5 V Trước hết ta có: ( ) 3 3 3 4 x y x y + + ≥ (biến đổi tương đương) ( ) ( ) 2 0x y x y⇔ ⇔ − + ≥ Đặt x + y + z = a. Khi đó ( ) ( ) ( ) 3 3 3 3 3 3 3 3 64 64 4 1 64 x y z a z z P t t a a + + − + ≥ = = − + (với t = z a , 0 1t≤ ≤ ) Xét hàm số f(t) = (1 – t) 3 + 64t 3 với t [ ] 0;1∈ . Có ( ) [ ] 2 2 1 '( ) 3 64 1 , '( ) 0 0;1 9 f t t t f t t   = − − = ⇔ = ∈   Lập bảng biến thiên ( ) [ ] 0;1 64 inf 81 t M t ∈ ⇒ = ⇒ GTNN của P là 16 81 đạt được khi x = y = 4z > 0 0,5 0,5 VIa 1 Tâm I của đường tròn thuộc ∆ nên I(-3t – 8; t) Theo yc thì k/c từ I đến ∆ ’ bằng k/c IA nên ta có 2 2 2 2 3( 3 8) 4 10 ( 3 8 2) ( 1) 3 4 t t t t − − − + = − − + + − + Giải tiếp được t = -3 Khi đó I(1; -3), R = 5 và pt cần tìm: (x – 1) 2 + (y + 3) 2 = 25. 0,25 0,25 0,5 2 Gọi A = d 1 ∩(P) suy ra A(1; 0 ; 2) ; B = d 2 ∩ (P) suy ra B(2; 3; 1) Đường thẳng ∆ thỏa mãn bài tốn đi qua A và B. Một vectơ chỉ phương của đường thẳng ∆ là (1;3; 1)u = − r Phương trình chính tắc của đường thẳng ∆ là: 1 2 1 3 1 x y z− − = = − 0,5 0,5 Xét phương trình Z 4 – Z 3 + 6Z 2 – 8Z – 16 = 0 Dễ dàng nhận thấy phương trình có nghiệm Z 1 = –1, sau đó bằng cách chia đa thức hoặc Honer ta thấy phương trình có nghiệm thứ hai Z 2 = 2. Vậy phương trình trở thành: GV: Hồng Khắc Lợi - 0915.12.45.46 A B C C’ B’ A ’ H O M VIIa (Z + 1)(Z – 2)(Z 2 + 8) = 0 Suy ra: Z 3 = 2 2 i vaø Z 4 = – 2 2 i Ñaùp soá: { } − − −1,2, 2 2 i, 2 2 i 0,5 0,5 VIb 1 ( ) ( ) ( ) ( ) 1 1 1 2 2 2 : 0;2 , 3; : 3; 4 , 3.C I R C I R = − = Gọi tiếp tuyến chung của ( ) ( ) 1 2 ,C C là ( ) 2 2 : 0 0Ax By C A B ∆ + + = + ≠ ∆ là tiếp tuyến chung của ( ) ( ) 1 2 ,C C ( ) ( ) ( ) ( ) 2 2 1 1 2 2 2 2 2 3 1 ; ; 3 4 3 2 B C A B d I R d I R A B C A B   + = + ∆ =   ⇔ ⇔   ∆ =   − + = +   Từ (1) và (2) suy ra 2A B= hoặc 3 2 2 A B C − + = Trường hợp 1: 2A B= .Chọn 1 2 2 3 5 : 2 2 3 5 0B A C x y = ⇒ = ⇒ = − ± ⇒ ∆ + − ± = Trường hợp 2: 3 2 2 A B C − + = . Thay vào (1) được 2 2 4 2 2 0; : 2 0; : 4 3 9 0 3 A B A B A A B y x y − = + ⇔ = = − ⇒ ∆ + = ∆ − − = 0,5 0,5 2 Gọi ( ) ( ) 1 2 M d M 2t;1 t; 2 t ,N d N 1 2t ';1 t ';3∈ ⇒ − − + ∈ ⇒ − + + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 MN 2t 2t ' 1;t t '; t 5 2 2t 2t ' 1 t t ' t 5 0 MN.u 0 2 2t 2t ' 1 t t ' 0 MN.u 0 6t 3t ' 3 0 t t' 1 3t 5t ' 2 0 M 2;0; 1 , N 1;2;3 ,MN 1;2;4 x 2 y z 1 PT MN : 1 2 4 ⇒ − + − + − +   − + − − + + − + = =   ⇔   − + − + + = =     − + + =  ⇔ ⇔ = =  − + − =  ⇒ − − − + ⇒ = = − uuuur uuuur uur uuuur uur uuuur 0,5 0,5 VIIb Điều kiện: 0 0 y x y − >   >  Hệ phương trình ( ) 4 4 4 2 2 2 2 2 2 1 1 log log 1 log 1 4 25 25 25 y x y x y x y y y x y x y x y − −    − + = − = − =    ⇔ ⇔ ⇔       + = + = + =    2 2 2 2 2 3 3 3 25 25 9 25 10 x y x y x y y x y y y =  = =    ⇔ ⇔ ⇔    = + = + =     ( ) ( ) 15 5 ; ; 10 10 15 5 ; ; 10 10 x y x y    =   ÷    ⇔    = − −   ÷     ( loại) Vậy hệ phương trình đã cho vô nghiệm. 0,5 0,5 Nếu thí sinh làm bài không theo cách nêu trong đáp án mà vẫn đúng thì được đủ điểm từng phần như đáp án quy định. Hết GV: Hoàng Khắc Lợi - 0915.12.45.46 GV: Hoàng Khắc Lợi - 0915.12.45.46 . 1;2;3 ,MN 1;2;4 x 2 y z 1 PT MN : 1 2 4 ⇒ − + − + − +   − + − − + + − + = =   ⇔   − + − + + = =     − + + =  ⇔ ⇔ = =  − + − =  ⇒ − − − + ⇒ = = − uuuur uuuur uur uuuur uur uuuur 0,5 0,5 VIIb . ) 3 3 3 4 x y x y + + ≥ (biến đổi tương đương) ( ) ( ) 2 0x y x y⇔ ⇔ − + ≥ Đặt x + y + z = a. Khi đó ( ) ( ) ( ) 3 3 3 3 3 3 3 3 64 64 4 1 64 x y z a z z P t t a a + + − + ≥ = = − + (với t =. 0915.12.45.46 ĐÁP ÁN CHI TIẾT ĐỀ THI THỬ THÁNG 6 Câu Ý Nội dung Điểm I 1 *Tập xác định: D = R * y’ = - 3x 2 + 6x ; y’ = 0 ⇔ 0 2 x x =   =  *Bảng biến thi n x -∞ 0 3 + ∞ y’ - 0 + 0 - + ∞ 2 y -2

Ngày đăng: 09/07/2014, 03:00

TỪ KHÓA LIÊN QUAN

w