1. Trang chủ
  2. » Giáo án - Bài giảng

ôn thi đại học (lý thuyết)

28 290 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 28
Dung lượng 0,94 MB

Nội dung

PHẦN MỘT: ÔN TẬP TÓM TẮT CHƯƠNG TRÌNH THI ĐẠI HỌC MÔN TOÁN I- GIẢI TÍCH TỔ HP 1. Giai thừa : n! = 1.2 n 0! = 1 n! /(n – k)! = (n – k + 1).(n – k + 2) n 2. Nguyên tắc cộng : Trường hợp 1 có m cách chọn, trường hợp 2 có n cách chọn; mỗi cách chọn đều thuộc đúng một trường hợp. Khi đó, tổng số cách chọn là : m + n. 3. Nguyên tắc nhân : Hiện tượng 1 có m cách chọn, mỗi cách chọn này lại có n cách chọn hiện tượng 2. Khi đó, tổng số cách chọn liên tiếp hai hiện tượng là : m x n. 4. Hoán vò : Có n vật khác nhau, xếp vào n chỗ khác nhau. Số cách xếp : P n = n !. 5. Tổ hợp : Có n vật khác nhau, chọn ra k vật. Số cách chọn : )!kn(!k !n C k n − = 6. Chỉnh hợp : Có n vật khác nhau. Chọn ra k vật, xếp vào k chỗ khác nhau số cách : = = − k k k n n n k n! A , A C .P (n k)! Chỉnh hợp = tổ hợp rồi hoán vò 7. Tam giác Pascal : 1 4 4 3 4 2 4 1 4 0 4 3 3 2 3 1 3 0 3 2 2 1 2 0 2 1 1 0 1 0 0 CCCCC CCCC CCC CC C 1 1 1 2 1 1 3 3 1 1 4 6 4 1 Tính chất : k 1n k n 1k n kn n k n n n 0 n CCC CC,1CC + − − =+ === 8. Nhò thức Newton : * n0n n 11n1 n 0n0 n n baC baCbaC)ba( +++=+ − a = b = 1 : 0 1 n n n n n C C C 2+ + + = Với a, b ∈ {±1, ±2, }, ta chứng minh được nhiều đẳng thức chứa : n n 1 n 0 n C, ,C,C * nn n 1n1 n n0 n n xC xaCaC)xa( +++=+ − Ta chứng minh được nhiều đẳng thức chứa n n 1 n 0 n C, ,C,C bằng cách : - Đạo hàm 1 lần, 2 lần, cho x = ±1, ±2, a = ±1, ±2, TRANG 1 - Nhân với x k , đạo hàm 1 lần, 2 lần, cho x = ±1, ±2, , a = ±1, ±2, - Cho a = ±1, ±2, , ∫∫ ±± 2 0 1 0 hay hay β α ∫ Chú ý : * (a + b) n : a, b chứa x. Tìm số hạng độc lập với x : k n k k m n C a b Kx − = Giải pt : m = 0, ta được k. * (a + b) n : a, b chứa căn . Tìm số hạng hữu tỷ. m r k n k k p q n C a b Kc d − = Giải hệ pt :    ∈ ∈ Zq/r Zp/m , tìm được k * Giải pt , bpt chứa C,A k n k n : đặt điều kiện k, n ∈ N * , k ≤ n. Cần biết đơn giản các giai thừa, qui đồng mẫu số, đặt thừa số chung. * Cần phân biệt : qui tắc cộng và qui tắc nhân; hoán vò (xếp, không bốc), tổ hợp (bốc, không xếp), chỉnh hợp (bốc rồi xếp). * Áp dụng sơ đồ nhánh để chia trường hợp , tránh trùng lắp hoặc thiếu trường hợp. * Với bài toán tìm số cách chọn thỏa tính chất p mà khi chia trường hợp, ta thấy số cách chọn không thỏa tính chất p ít trường hợp hơn, ta làm như sau : số cách chọn thỏa p. = số cách chọn tùy ý - số cách chọn không thỏa p. Cần viết mệnh đề phủ đònh p thật chính xác. * Vé số, số biên lai, bảng số xe : chữ số 0 có thể đứng đầu (tính từ trái sang phải). * Dấu hiệu chia hết : - Cho 2 : tận cùng là 0, 2, 4, 6, 8. - Cho 4 : tận cùng là 00 hay 2 chữ số cuối hợp thành số chia hết cho 4. - Cho 8 : tận cùng là 000 hay 3 chữ số cuối hợp thành số chia hết cho 8. - Cho 3 : tổng các chữ số chia hết cho 3. - Cho 9 : tổng các chữ số chia hết cho 9. - Cho 5 : tận cùng là 0 hay 5. - Cho 6 : chia hết cho 2 và 3. - Cho 25 : tận cùng là 00, 25, 50, 75. II- ĐẠI SỐ 1. Chuyển vế : a + b = c ⇔ a = c – b; ab = c ⇔        = ≠ == b/ca 0b 0cb TRANG 2 a/b = c ⇔    ≠ = 0b bca ; 1n2 1n2 baba + + =⇔= 2n 2n 2n 2n b a a b a b, a b a 0  = = ⇔ = ± = ⇔  ≥     α=⇔= ≥ ±= ⇔= α a bbloga, 0a ab ba    > <    < > >= ⇔<−<⇔<+ b/ca 0b b/ca 0b 0c,0b cab;bcacba 2. Giao nghiệm :    <⇔ < <    >⇔ > > }b,amin{x bx ax ;}b,amax{x bx ax   Γ  > ∨ < < <   ⇔ ⇔   < Γ ≥     Γ  p x a p q a x b(nếua b) ; x b VN(nếua b) q Nhiều dấu v : vẽ trục để giao nghiệm. 3. Công thức cần nhớ : a. : chỉ được bình phương nếu 2 vế không âm. Làm mất phải đặt điều kiện.    ≤≤ ≥    ⇔≤ = ≥ ⇔= 22 ba0 0b ba, ba 0b ba    ≥ ≥    ∨ ≥ < ⇔≥ 2 ba 0b 0a 0b ba )0b,anếu(b.a )0b,anếu(b.a ab <−− ≥ = b. . : phá . bằng cách bình phương : 2 2 aa = hay bằng đònh nghóa : )0anếu(a )0anếu(a a <− ≥ = baba; ba 0b ba ±=⇔=    ±= ≥ ⇔= a b b a b≤ ⇔ − ≤ ≤ b 0 a b b 0hay a b a b ≥  ≥ ⇔ <  ≤ − ∨ ≥  TRANG 3 0baba 22 ≤−⇔≤ c. Mũ : .1a0nếuy,1anếuy,0y,Rx,ay x <<↓>↑>∈= 0 m/ n m m n m nn m n m n m n m.n n n n n n n m n a 1; a 1/ a ; a .a a a /a a ; (a ) a ; a / b (a/ b) a .b (ab) ; a a (m n,0 a 1) a = 1 − + − = = = = = = = = ⇔ = < ≠ ∨ α =α <<> >< ⇔< a log nm a, )1a0nếu(nm )1anếu(nm aa d. log : y = log a x , x > 0 , 0 < a ≠ 1, y ∈ R y↑ nếu a > 1, y↓ nếu 0 < a < 1, α = log a a α log a (MN) = log a M + log a N ( ⇐ ) log a (M/N) = log a M – log a N ( ⇐ ) 2 aaa 2 a MlogMlog2,Mlog2Mlog == (⇒) log a M 3 = 3log a M, log a c = log a b.log b c log b c = log a c/log a b, Mlog 1 Mlog a a α = α log a (1/M) = – log a M, log a M = log a N ⇔ M = N a a 0 M N(nếua 1) log M log N M N 0(nếu0 a 1) < < > < ⇔ > > < < Khi làm toán log, nếu miền xác đònh nới rộng : dùng điều kiện chặn lại, tránh dùng công thức làm thu hẹp miền xác đònh. Mất log phải có điều kiện. 4. Đổi biến : a. Đơn giản: Rxlogt,0at,0xt,0xt,0xt,Rbaxt a x2 ∈=>=≥=≥=≥=∈+= Nếu trong đề bài có điều kiện của x, ta chuyển sang điều kiện của t bằng cách biến đổi trực tiếp bất đẳng thức. b. Hàm số : t = f(x) dùng BBT để tìm điều kiện của t. Nếu x có thêm điều kiện, cho vào miền xác đònh của f. c. Lượng giác : t = sinx, cosx, tgx, cotgx. Dùng phép chiếu lượng giác để tìm điều kiện của t. d. Hàm số hợp : từng bước làm theo các cách trên. 5. Xét dấu : a. Đa thức hay phân thức hữu tỷ, dấu A/B giống dấu A.B; bên phải cùng dấu hệ số bậc cao nhất; qua nghiệm đơn (bội lẻ) : đổi dấu; qua nghiệm kép (bội chẵn) : không đổi dấu. b. Biểu thức f(x) vô tỷ : giải f(x) < 0 hay f(x) > 0. c. Biểu thức f(x) vô tỷ mà cách b không làm được : xét tính liên tục và đơn điệu của f, nhẩm 1 nghiệm của pt f(x) = 0, phác họa đồ thò của f , suy ra dấu của f. 6. So sánh nghiệm phương trình bậc 2 với α : TRANG 4 f(x) = ax 2 + bx + c = 0 (a ≠ 0) * S = x 1 + x 2 = – b/a ; P = x 1 x 2 = c/a Dùng S, P để tính các biểu thức đối xứng nghiệm. Với đẳng thức g(x 1 ,x 2 ) = 0 không đối xứng, giải hệ pt :      = += = 21 21 x.xP xxS 0g Biết S, P thỏa S 2 – 4P ≥ 0, tìm x 1 , x 2 từ pt : X 2 – SX + P = 0 * Dùng ∆, S, P để so sánh nghiệm với 0 : x 1 < 0 < x 2 ⇔ P < 0, 0 < x 1 < x 2 ⇔      > > >∆ 0S 0P 0 x 1 < x 2 < 0 ⇔      < > >∆ 0S 0P 0 * Dùng ∆, af(α), S/2 để so sánh nghiệm với α : x 1 < α < x 2 ⇔ af(α) < 0 α < x 1 < x 2 ⇔      <α >α >∆ 2/S 0)(f.a 0 ; x 1 < x 2 < α ⇔      α< >α >∆ 2/S 0)(f.a 0 α < x 1 < β < x 2 ⇔ a.f( ) 0 a.f( ) 0 β <   α >   α < β  ; x 1 < α < x 2 < β ⇔      β<α >β <α 0)(f.a 0)(f.a 7. Phương trình bậc 3 : a. Viête : ax 3 + bx 2 + cx + d = 0 x 1 + x 2 + x 3 = – b/a , x 1 x 2 + x 1 x 3 + x 2 x 3 = c/a , x 1 .x 2 .x 3 = – d/a Biết x 1 + x 2 + x 3 = A , x 1 x 2 + x 1 x 3 + x 2 x 3 = B , x 1 .x 2 .x 3 = C thì x 1 , x 2 , x 3 là 3 nghiệm phương trình : x 3 – Ax 2 + Bx – C = 0 b. Số nghiệm phương trình bậc 3 : • x = α ∨ f(x) = ax 2 + bx + c = 0 (a ≠ 0) : 3 nghiệm phân biệt ⇔    ≠α >∆ 0)(f 0 2 nghiệm phân biệt ⇔    ≠α =∆ ∨    =α >∆ 0)(f 0 0)(f 0 1 nghiệm ⇔ ( ) ∆  ∆  α  = 0 < 0hay f = 0 • Phương trình bậc 3 không nhẩm được 1 nghiệm, m tách được sang 1 vế : dùng sự tương giao giữa (C) : y = f(x) và (d) : y = m. TRANG 5 • Phương trình bậc 3 không nhẩm được 1 nghiệm, m không tách được sang 1 vế : dùng sự tương giao giữa (C m ) : y = f(x, m) và (Ox) : y = 0 3 nghiệm ⇔    < >∆ 0y.y 0 CTCĐ 'y 2 nghiệm ⇔    = >∆ 0y.y 0 CTCĐ 'y 1 nghiệm ⇔ ∆ y' ≤ 0 ∨    > >∆ 0y.y 0 CTCĐ 'y c. Phương trình bậc 3 có 3 nghiệm lập thành CSC : ⇔    = >∆ 0y 0 uốn 'y d. So sánh nghiệm với α : • x = x o ∨ f(x) = ax 2 + bx + c = 0 (a ≠ 0) : so sánh nghiệm phương trình bậc 2 f(x) với α. • Không nhẩm được 1 nghiệm, m tách được sang 1 vế : dùng sự tương giao của f(x) = y: (C) và y = m: (d) , đưa α vào BBT. • Không nhẩm được 1 nghiệm, m không tách được sang 1 vế : dùng sự tương giao của (C m ) : y = ax 3 + bx 2 + cx + d (có m) ,(a > 0) và (Ox) α < x 1 < x 2 < x 3 ⇔ y' CĐ CT CĐ 0 y .y 0 y( ) 0 x ∆ >   <   α <   α <  x 1 < α < x 2 < x 3 ⇔        <α >α < >∆ CT CTCĐ 'y x 0)(y 0y.y 0 x 1 < x 2 < α < x 3 ⇔        α< <α < >∆ CĐ CTCĐ 'y x 0)(y 0y.y 0 TRANG 6 α x 1 x 2 x 3 α x 1 x 2 x 3 α x 1 x 2 x 3 x 1 < x 2 < x 3 < α ⇔ y' CĐ CT CT 0 y .y 0 y( ) 0 x ∆ >   <   α >   < α  8. Phương trình bậc 2 có điều kiện : f(x) = ax 2 + bx + c = 0 (a ≠ 0), x ≠ α 2 nghiệm ⇔    >∆ ≠α 0 0)(f , 1 nghiệm ⇔    ≠α =∆    =α >∆ 0)(f 0 0)(f 0 Vô nghiệm ⇔ ∆ < 0 ∨    =α =∆ 0)(f 0 Nếu a có tham số, xét thêm a = 0 với các trường hợp 1 nghiệm, VN. 9. Phương trình bậc 4 : a. Trùng phương : ax 4 + bx 2 + c = 0 (a ≠ 0) ⇔    = ≥= 0)t(f 0xt 2 t = x 2 ⇔ x = ± t 4 nghiệm ⇔      > > >∆ 0S 0P 0 ; 3 nghiệm ⇔    > = 0S 0P 2 nghiệm ⇔    > =∆ < 02/S 0 0P ; 1 nghiệm ⇔    = =∆    < = 02/S 0 0S 0P VN ⇔ ∆ < 0 ∨      < > ≥∆ 0S 0P 0 ⇔ ∆ < 0 ∨ 0 0 P S   >   <  4 nghiệm CSC ⇔    = << 12 21 t3t tt0 Giải hệ pt :      = += = 21 21 12 t.tP ttS t9t b. ax 4 + bx 3 + cx 2 + bx + a = 0. Đặt t = x + x 1 . Tìm đk của t bằng BBT : 2t ≥ TRANG 7 α x 1 x 2 x 3 c. ax 4 + bx 3 + cx 2 – bx + a = 0. Đặt t = x – x 1 . Tìm đk của t bằng BBT : t ∈ R. d. (x + a)(x + b)(x + c)(x + d) = e với a + b = c + d. Đặt : t = x 2 + (a + b)x. Tìm đk của t bằng BBT. e. (x + a) 4 + (x + b) 4 = c. Đặt : 2 ba xt + += , t ∈ R. 10. Hệ phương trình bậc 1 :    =+ =+ 'cy'bx'a cbyax . Tính : D = 'b b 'a a , D x = 'b b 'c c , D y = 'c c 'a a D ≠ 0 : nghiệm duy nhất x = D x /D , y = D y /D. D = 0, D x ≠ 0 ∨ D y ≠ 0 : VN D = D x = D y = 0 : VSN hay VN (giải hệ với m đã biết). 11. Hệ phương trình đối xứng loại 1 : Từng phương trình đối xứng theo x, y. Đạt S = x + y, P = xy. ĐK : S 2 – 4P ≥ 0. Tìm S, P. Kiểm tra đk S 2 – 4P ≥ 0; Thế S, P vào pt : X 2 – SX + P = 0, giải ra 2 nghiệm là x và y. (α, β) là nghiệm thì (β, α) cũng là nghiệm; nghiệm duy nhất ⇒ α = β ⇒ m = ? Thay m vào hệ, giải xem có duy nhất nghiệm không. 12. Hệ phương trình đối xứng loại 2 : Phương trình này đối xứng với phương trình kia. Trừ 2 phương trình, dùng các hằng đẳng thức đưa về phương trình tích A.B = 0. Nghiệm duy nhất làm như hệ đối xứng loại 1. 13. Hệ phương trình đẳng cấp :    =++ =++ 'dy'cxy'bx'a dcybxyax 22 22 Xét y = 0. Xét y ≠ 0 : đặt x = ty, chia 2 phương trình để khử t. Còn 1 phương trình theo y, giải ra y, suy ra t, suy ra x. Có thể xét x = 0, xét x ≠ 0, đặt y = tx. 14. Bất phương trình, bất đẳng thức : * Ngoài các bất phương trình bậc 1, bậc 2, dạng cơ bản của ., , log, mũ có thể giải trực tiếp, các dạng khác cần lập bảng xét dấu. Với bất phương trình dạng tích AB < 0, xét dấu A, B rồi AB. * Nhân bất phương trình với số dương : không đổi chiều số âm : có đổi chiều Chia bất phương trình : tương tự. * Chỉ được nhân 2 bất pt vế theo vế , nếu 2 vế không âm. * Bất đẳng thức Côsi : TRANG 8 a, b ≥ 0 : ab 2 ba ≥ + Dấu = xảy ra chỉ khi a = b. a, b, c ≥ 0 : 3 abc 3 cba ≥ ++ Dấu = xảy ra chỉ khi a = b = c. * Bất đẳng thức Bunhiacốpxki : a, b, c, d (ac + bd) 2 ≤ (a 2 + b 2 ).(c 2 + d 2 ); Dấu = xảy ra chỉ khi a/b = c/d 15. Bài toán tìm m để phương trình có k nghiệm : Nếu tách được m, dùng sự tương giao của (C) : y = f(x) và (d) : y = m. Số nghiệm bằng số điểm chung. Nếu có điều kiện của x ∈ I, lập BBT của f với x ∈ I. 16. Bài toán tìm m để bất pt vô nghiệm, luôn luôn nghiệm, có nghiệm x ∈ I : Nếu tách được m, dùng đồ thò, lập BBT với x ∈ I. f(x) ≤ m : (C) dưới (d) (hay cắt) f(x) ≥ m : (C) trên (d) (hay cắt) III- LƯNG GIÁC 1. Đường tròn lượng giác : Trên đường tròn lượng giác, góc α đồng nhất với cung AM, đồng nhất với điểm M. Ngược lại, 1 điểm trên đường tròn lượng giác ứng với vô số các số thực x + k2π. Trên đường tròn lượng giác, nắm vững các góc đặc biệt : bội của 6 π ( 3 1 cung phần tư) và 4 π ( 2 1 cung phần tư) x = α + n k2 π : α là 1 góc đại diện, n : số điểm cách đều trên đường tròn lượng giác. 2. Hàm số lượng giác : 3. Cung liên kết : * Đổi dấu, không đổi hàm : đối, bù, hiệu π (ưu tiên không đổi dấu : sin bù, cos đối, tg cotg hiệu π). * Đổi hàm, không đổi dấu : phụ * Đổi dấu, đổi hàm : hiệu 2 π (sin lớn = cos nhỏ : không đổi dấu). 4. Công thức : a. Cơ bản : đổi hàm, không đổi góc. b. Cộng : đổi góc a ± b, ra a, b. TRANG 9 2− π 2π 0 + 2π 0 2− π α 0 A x+k2 M cos chiếu sin M cotg chiếu xuyên tâm tg M c. Nhân đôi : đổi góc 2a ra a. d. Nhân ba : đổi góc 3a ra a. e. Hạ bậc : đổi bậc 2 ra bậc 1. Công thức đổi bậc 3 ra bậc 1 suy từ công thức nhân ba. f. Đưa về 2 a tgt = : đưa lượng giác về đại số. g. Tổng thành tích : đổi tổng thành tích và đổi góc a, b thành (a ± b) / 2. h. Tích thành tổng : đổi tích thành tổng và đổi góc a, b thành a ± b. 5. Phương trình cơ bản : sinα = 0⇔ cosα = – 1 hay cosα = 1⇔ α = kπ, sinα = 1 ⇔ α = 2 π + k2π; sinα = –1 ⇔ α = – 2 π + k2π, cosα = 0 ⇔ sinα = –1 hay sinα = 1 ⇔ α = 2 π + kπ, cosα = 1 ⇔ α = k2π, cosα = – 1 ⇔ α = π + k2π sinu = sinv ⇔ u = v + k2π ∨ u = π – v + k2π cosu = cosv ⇔ u = ± v + k2π tgu = tgv ⇔ u = v + kπ cotgu = cotgv ⇔ u = v + kπ 6. Phương trình bậc 1 theo sin và cos : asinu + bcosu = c * Điều kiện có nghiệm : a 2 + b 2 ≥ c 2 * Chia 2 vế cho 22 ba + , dùng công thức cộng đưa về phương trình cơ bản. (cách khác : đưa về phương trình bậc 2 theo 2 u tgt = ) 7. Phương trình đối xứng theo sin, cos : Đưa các nhóm đối xứng về sin + cos và sin.cos. Đặt : t = sinu + cosu = 2 t 1 2 sin u , 2 t 2,sinu.cosu 4 2 π −   + − ≤ ≤ =  ÷   8. Phương trình chứa sinu + cosu và sinu.cosu : Đặt : 2 1 2 0 2 4 2 t t sinu cos u sin u , t ,sin u.cos u π −   = + = + ≤ ≤ =  ÷   9. Phương trình chứa sinu – cosu và sinu.cosu : Đặt : π −   = − = − − ≤ ≤ =  ÷   2 1 t t sinu cosu 2 sin u , 2 t 2,sinu.cosu 4 2 10. Phương trình chứa sinu – cosu và sinu.cosu : Đặt : 2 1 2 0 2 4 2 t t sinu cosu sin u , t ,sin u.cos u π −   = − = − ≤ ≤ =  ÷   11. Phương trình toàn phương (bậc 2 và bậc 0 theo sinu và cosu) : Xét cosu = 0; xét cosu ≠ 0, chia 2 vế cho cos 2 u, dùng công thức 1/cos 2 u = 1 + tg 2 u, đưa về phương trình bậc 2 theo t = tgu. TRANG 10 [...]... có 1 cực trò ⇔ ab ≥ 0, 3 cực trò ⇔ ab < 0 10 ĐƠN ĐIỆU : a Biện luận sự biến thi n của hàm bậc 3 : i) a > 0 và y’ = 0 vô nghiệm ⇒ hàm số tăng trên R (luôn luôn tăng) ii) a < 0 và y’ = 0 vô nghiệm ⇒ hàm số giảm (nghòch biến) trên R (luôn luôn giảm) iii) a > 0 và y’ = 0 có 2 nghiệm phân biệt x1, x2 với x1 < x2 ⇒ hàm số đạt cực đại tại x1 và đạt cực tiểu tại x2 Ngoài ra ta còn có : + x1 + x2 = 2x0 với x0... biết dạng; mp (P) : 4 ẩn A, B, C, D; mặt cầu (S) : 4 ẩn a, b, c, R hay A, B, C, D; đường thẳng trong không gian (d) = (P) ∩ (Q); đường tròn trong không gian (C) = (P) ∩ (S) * Với các bài toán hình không gian : cần lập hệ trục tọa độ HÀ VĂN CHƯƠNG- PHẠM HỒNG DANH-NGUYỄN VĂN NHÂN (TRUNG TÂM LUYỆN THI ĐẠI HỌC VĨNH VIỄN) TRANG 28 ... Giải phương trình bằng cách đổi biến : Nếu không đưa được phương trình về dạng tích, thử đặt : * t = cosx : nếu phương trình không đổi khi thay x bởi – x * t = sinx : nếu phương trình không đổi khi thay x bởi π – x * t = tgx : nếu phương trình không đổi khi thay x bởi π + x * t = cos2x : nếu cả 3 cách trên đều đúng x * t = tg : nếu cả 3 cách trên đều không đúng 2 14 Phương trình đặc biệt : u=0 2 2... cotg  F(x) ± F(y) = m (1) a Dạng 1 :  Dùng công thức đổi + thành nhân, (2) x±y = n x+y =a thế (2) vào (1) đưa về hệ phương trình :  x−y = b  F(x).F(y) = m b Dạng 2 :  Tương tự dạng 1, dùng công thức đổi nhân x±y=n thành +  F(x ) / F(y ) = m c Dạng 3 :  x±y=n a c a+c a−c = Dùng tỉ lệ thức : = ⇔ biến đổi phương trình (1) rồi dùng b d b+d b−d công thức đổi + thành x TRANG 11 d Dạng khác :... (Cm) và (C/m) = số điểm chung của (C) và (d) • PThđ điểm chung, không tách được m, dạng f(x) = ax 2 + bx + c = 0 (x ≠ α) hay dạng bậc 3 : x = α ∨ f(x) = 0 : lập ∆, xét dấu ∆, giải pt f(x) = 0 để biết m nào thì α là nghiệm của f, với m đó, số nghiệm bò bớt đi 1 9 CỰC TRỊ : * f có đúng n cực trò ⇔ f/ đổi dấu n lần  f / (x o ) = 0 * f đạt cực đại tại xo ⇔  //  f (x o ) < 0 TRANG 19  f / (x o ) = 0 f đạt... f (x) sin u (dạng 0 / 0), dùng công thức lim =1 b Hàm lg : lim x→a g(x) u→0 u f (x) (dạng 0 / 0) , dùng lượng liên hiệp : c Hàm chứa căn : lim x→a g(x ) TRANG 15 b b Chú ý : xoay quanh (Ox) : ∫ dx ; xoay quanh (Oy) : ∫ dy 1 Tìm lim dạng -g(x) a2 – b2 = (a – b)(a + b) để phá , a3 – b3 = (a – b)(a2 + ab + b2) để phá 3 1/ u lim d Hàm chứa mũ hay log (dạng 1∞) : dùng công thức u→0(1 + u) = e 2 Đạo hàm... (x1, x2) iv) a < 0 và y’ = 0 có 2 nghiệm phân biệt x1, x2 với x1 < x2 ⇒ hàm đạt cực tiểu tại x1 và đạt cực đại tại x2 thỏa điều kiện x1 + x2 = 2x0 (x0 là hoành độ điểm uốn) Ta cũng có : + hàm số giảm trên (−∞, x1) + hàm số giảm trên (x2, +∞) + hàm số tăng trên (x1, x2) TRANG 20 b Biện luận sự biến thi n của y = bậc 2 bậc1 i) Nếu a.m > 0 và y/ = 0 vô nghiệm thì hàm tăng ( đồng biến) trên từng khỏang xác... giảm ( nghòch biến) trên từng khỏang xác đònh iii) Nếu a.m > 0 và y/ = 0 có 2 nghiệm phân biệt x 1, x2 thì hàm đạt cực đại tại x 1 và đạt cực tiểu tại x2 thỏa x1 < x2 và x1 + x 2 p =− 2 m iv) Nếu a.m < 0 và y/ = 0 có 2 nghiệm phân biệt x1, x2 thì hàm đạt cực tiểu tại x1 và đạt cực đại tại x2 thỏa x1 < x2 và x1 + x 2 p =− 2 m c Tìm m để hàm số bậc 3, bậc 2/bậc 1 đồng biến (nghòch biến) trên miền x... hc vuông góc của (d) xuống (P) : viết pt mp (Q) chứa (d), ⊥ (P); (d/) = (P) ∩ (Q) * Tìm hc song song của (d) theo phương (∆) xuống (P) : viết pt mp (Q) chứa (d) // (∆); (d/) = (P) ∩ (Q) 5 Đường tròn : * Đường tròn (C) xác đònh bởi tâm I(a,b) và bk R : (C) : (x – a) 2 + (y – b)2 = R2 * (C) : x2 + y2 + 2Ax + 2By + C = 0 có tâm I(–A,–B), bk R = A 2 + B2 − C * (d) tx (C) ⇔ d(I, (d)) = R, cắt ⇔ < R, không... trong ⇔ / / = R − R (1 tt chung là trục đẳng phương) chứa nhau ⇔ < R − R (không có tt chung) 6 Mặt cầu : * Mc (S) xđ bởi tâm I (a, b, c) và bk R : (S) : (x – a) 2 + (y – b2) + (z – c)2 = R2 * (S) : x2 + y2 + z2 + 2Ax + 2By + 2Cz + D = 0 có tâm I(–A,–B,–C), bk R = A 2 + B2 + C2 − D * (P) tx (S) ⇔ d(I,(P)) = R, cắt ⇔ < R, không cắt ⇔ > R * Pt tiếp diện với (S) tại M : phân đôi tđộ (S) * Cho (S) : F(x, . PHẦN MỘT: ÔN TẬP TÓM TẮT CHƯƠNG TRÌNH THI ĐẠI HỌC MÔN TOÁN I- GIẢI TÍCH TỔ HP 1. Giai thừa : n! = 1.2 n 0! = 1 n! /(n – k)! =. luận sự biến thi n của hàm bậc 3 : i) a > 0 và y’ = 0 vô nghiệm ⇒ hàm số tăng trên R (luôn luôn tăng) ii) a < 0 và y’ = 0 vô nghiệm ⇒ hàm số giảm (nghòch biến) trên R (luôn luôn giảm) iii). cos đối, tg cotg hiệu π). * Đổi hàm, không đổi dấu : phụ * Đổi dấu, đổi hàm : hiệu 2 π (sin lớn = cos nhỏ : không đổi dấu). 4. Công thức : a. Cơ bản : đổi hàm, không đổi góc. b. Cộng : đổi góc a

Ngày đăng: 07/07/2014, 19:00

w