Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 29 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
29
Dung lượng
498 KB
Nội dung
Đề cơng ôn tập thi vào 10 GV: Phạm Văn Mùi Phần I: đại số Chủ đề 1: Căn thức Biến đổi căn thức. Dạng 1: Tìm điều kiện để biểu thức có chứa căn thức có nghĩa. Ph ơng pháp giải: A có nghĩa <=> A 0 Bài 1: Tìm x để các biểu thức sau có nghĩa.( Tìm ĐKXĐ của các biểu thức sau). Dạng 2: Biến đổi đơn giản căn thức. Phơng pháp giải: áp dụng các công thức biến đổi căn thức 1. < = 0A Nếu A nếu A A A 2 2. BAAB .= Với A 0 và B 0 3. B A B A = Với A 0 và B > 0 4. BABA = 2 Với B 0 5. = 0 B và 0 A Với 0 B và 0 A Với BA BA BA 2 2 6. AB BB A 1 = Với AB 0 và B 0 7. B BA B A = Với B > 0 8. 2 )( BA BAC BA C = Với A 0 và A B 2 9. BA BAC BA C = )( Với A 0 và B 0, A B Ngoài ra: BADC +=+ 2 trong đó = =+ DBA CBA . Bài 1: Đa một thừa số vào trong dấu căn. 22 x 7 x e) ; x25 x 5)(x d) ; 5 2 x c) 0);x (với x 2 x b) ; 3 5 5 3 a) > Bài 2: Thực hiện phép tính. 33 3; 3 33 3152631526 h) ;2142021420 g) 725725 f) ;10:)4503200550(15 c) 26112611 e) ;0,4)32)(10238( b) ;526526 d) ;877)714228( a) +++ ++ ++ ++++ Bài 3: Thực hiện phép tính. 1027 1528625 c) 57 1 :) 31 515 21 714 b) 6 1 ) 3 216 28 632 ( a) + + + Bài 4: Thực hiện phép tính. 1 3x16x 14) x2x 1 ) x5 3x 3x 1 13) x7 3x 6) 65xx 1 12) 27x x3 5) 35x2x 11) 12x 4) 73xx 10) 147x 1 3) 2x 9) 2x5 2) 3x 8) 13x 1) 2 2 2 2 2 2 ++ + + + + + + + 7 62126,5126,5 e) 77474 d) 25353 c) 535)(3535)(3 b) 1546)10)(15(4 ) +++ +++ ++++a Bài 5: Rút gọn các biểu thức sau: 53 53 53 53 d) 65 625 65 625 c) 113 3 113 3 b) 1247 1 1247 1 a) + + + + + + + +++ + Bài 6: Rút gọn biểu thức: 10099 1 43 1 32 1 21 1 c) 34710485354b) 4813526a) + ++ + + + + + +++++ Bài 7: Rút gọn biểu thức sau: 4 3y6xy3x yx 2 e) )4a4a(15a 12a 1 d) ; 4a a42a8aa c) 1.a và 0a với, 1a aa 1 1a aa 1 b) b.a và 0b 0,a với, ba 1 : ab abba a) 22 22 24 ++ + + > + + + >> + Bài 8: Tính giá trị của biểu thức ( ) ( ) a.)y)(1x(1xybiết , x1yy1xE e) 1.x2x9x2x16biết , x2x9x2x16D d) 3;3yy3xxbiết , yxC c) ;1)54(1)54(x với812xxB b) 549 1 y; 25 1 x khi2y,y3xxA a) 2222 2222 22 33 3 2 =++++++= =+++++= =+++++= +=+= + = =+= Dạng 3: Bài toán tổng hợp kiến thức và kỹ năng tính toán. Phơng pháp: + Tìm đk để biểu thức có nghĩa + Quy đồng, trục căn thức ở mẫu Bài 1: Cho biểu thức 21x 3x P = a) Rút gọn P. b) Tính giá trị của P nếu x = 4(2 - 3 ). 2 c) Tính giá trị nhỏ nhất của P. Bài 2: Xét biểu thức 1. a a2a 1aa aa A 2 + + + + = a) Rút gọn A. b) Biết a > 1, hãy so sánh A với A . c) Tìm a để A = 2. d) Tìm giá trị nhỏ nhất của A. Bài 3: Cho biểu thức x1 x 2x2 1 2x2 1 C + + = a) Rút gọn biểu thức C. b) Tính giá trị của C với 9 4 x = . c) Tính giá trị của x để . 3 1 C = Bài 4: Cho biểu thức 222222 baa b : ba a 1 ba a M + = a) Rút gọn M. b) Tính giá trị M nếu . 2 3 b a = c) Tìm điều kiện của a, b để M < 1. Bài 5: Xét biểu thức . 2 x)(1 1x2x 2x 1x 2x P 2 ++ + = a) Rút gọn P. b) Chứng minh rằng nếu 0 < x < 1 thì P > 0. c) Tìm giá trị lơn nhất của P. Bài 6: Xét biểu thức . x3 1x2 2x 3x 6x5x 9x2 Q + + + = a) Rút gọn Q. b) Tìm các giá trị của x để Q < 1. c) Tìm các giá trị nguyên của x để giá trị tơng ứng của Q cũng là số nguyên. Bài 7: Xét biểu thức ( ) yx xyyx : yx yx yx yx H 2 33 + + = a) Rút gọn H. b) Chứng minh H 0. c) So sánh H với H . Bài 8: Xét biểu thức . 1aaaa a2 1a 1 : 1a a 1A + + += a) Rút gọn A. b) Tìm các giá trị của a sao cho A > 1. c) Tính các giá trị của A nếu 200622007a = . Bài 9: Xét biểu thức . x1 2x 2x 1x 2xx 39x3x M + + + + + = a) Rút gọn M. b) Tìm các giá trị nguyên của x để giá trị tơng ứng của M cũng là số nguyên. 3 Bài 10: Xét biểu thức . 3x 3x2 x1 2x3 3x2x 11x15 P + + + + = a) Rút gọn P. b) Tìm các giá trị của x sao cho . 2 1 P = c) So sánh P với 3 2 . Chủ đề 2: Phơng trình bậc hai và định lí Viét. Dạng 1: Giải phơng trình bậc hai. Phơng pháp: 1. Xét xem hệ số a+b+c=0 hoặc a b + c = 0 2. Trong phơng trình có khuyết những hệ số nào? 3. Kiểm tra hệ số b Nếu b 2 thì dùng ' ngợc lại dùng CTNTQ Bài 1: Giải các phơng trình 1) x 2 6x + 14 = 0 ; 2) 4x 2 8x + 3 = 0 ; 3) 3x 2 + 5x + 2 = 0 ; 4) -30x 2 + 30x 7,5 = 0 ; 5) x 2 4x + 2 = 0 ; 6) x 2 2x 2 = 0 ; 7) x 2 + 2 2 x + 4 = 3(x + 2 ) ; 8) 2 3 x 2 + x + 1 = 3 (x + 1) ; 9) x 2 2( 3 - 1)x - 2 3 = 0. 10) x 2 25 = 0 Bài 2: Giải các phơng trình sau bằng cách nhẩm nghiệm: 1) 3x 2 11x + 8 = 0 ; 2) 5x 2 17x + 12 = 0 ; 3) x 2 (1 + 3 )x + 3 = 0 ; 4) (1 - 2 )x 2 2(1 + 2 )x + 1 + 3 2 = 0 ; 5) 3x 2 19x 22 = 0 ; 6) 5x 2 + 24x + 19 = 0 ; 7) ( 3 + 1)x 2 + 2 3 x + 3 - 1 = 0 ; 8) x 2 11x + 30 = 0 ; 9) x 2 12x + 27 = 0 ; 10) x 2 10x + 21 = 0. Dạng 2: Chứng minh phơng trình có nghiệm, vô nghiệm. Phơng pháp: Cho phơng trình: ax 2 +bx+c = 0 + C \ m a.c < 0 thì kết luận phơng trình có hai nghiệm trái dấu + C \ m 0 0a thì pt có nghiệm + C \ m > 0 0a thì pt có hai nghiệm + C \ m < 0 0a thì ptvn Bài 1: Chứng minh rằng các phơng trình sau luôn có nghiệm. 1) x 2 2(m - 1)x 3 m = 0 ; 2) x 2 + (m + 1)x + m = 0 ; 3) x 2 (2m 3)x + m 2 3m = 0 ; 4) x 2 + 2(m + 2)x 4m 12 = 0 ; 5) x 2 (2m + 3)x + m 2 + 3m + 2 = 0 ; 6) x 2 2x (m 1)(m 3) = 0 ; 7) x 2 2mx m 2 1 = 0 ; 8) (m + 1)x 2 2(2m 1)x 3 + m = 0 9) ax 2 + (ab + 1)x + b = 0. Bài 2: a) Chứng minh rằng với a, b , c là các số thực thì phơng trình sau luôn có nghiệm: (x a)(x b) + (x b)(x c) + (x c)(x a) = 0 4 b) Chứng minh rằng với ba số thức a, b , c phân biệt thì phơng trình sau có hai nghiệm phân biết: x) (ẩn 0 cx 1 bx 1 ax 1 = + + c) Chứng minh rằng phơng trình: c 2 x 2 + (a 2 b 2 c 2 )x + b 2 = 0 vô nghiệm với a, b, c là độ dài ba cạnh của một tam giác. d) Chứng minh rằng phơng trình bậc hai: (a + b) 2 x 2 (a b)(a 2 b 2 )x 2ab(a 2 + b 2 ) = 0 luôn có hai nghiệm phân biệt. Bài 3: a) Chứng minh rằng ít nhất một trong các phơng trình bậc hai sau đây có nghiệm: ax 2 + 2bx + c = 0 (1) bx 2 + 2cx + a = 0 (2) cx 2 + 2ax + b = 0 (3) b) Cho bốn phơng trình (ẩn x) sau: x 2 + 2ax + 4b 2 = 0 (1) x 2 - 2bx + 4a 2 = 0 (2) x 2 - 4ax + b 2 = 0 (3) x 2 + 4bx + a 2 = 0 (4) Chứng minh rằng trong các phơng trình trên có ít nhất 2 phơng trình có nghiệm. c) Cho 3 phơng trình (ẩn x sau): (3) 0 cb 1 x ba ba2a cx (2) 0 ba 1 x ac ac2c bx (1) 0 ac 1 x cb cb2b ax 2 2 2 = + + + + = + + + + = + + + + với a, b, c là các số dơng cho trớc. Chứng minh rằng trong các phơng trình trên có ít nhất một phơng trình có nghiệm. Bài 4: a) Cho phơng trình ax 2 + bx + c = 0. Biết a 0 và 5a + 4b + 6c = 0, chứng minh rằng phơng trình đã cho có hai nghiệm. b) Chứng minh rằng phơng trình ax 2 + bx + c = 0 ( a 0) có hai nghiệm nếu một trong hai điều kiện sau đợc thoả mãn: a(a + 2b + 4c) < 0 ; 5a + 3b + 2c = 0. Dạng 3: Tính giá trị của biểu thức đối xứng, lập phơng trình bậc hai nhờ nghiệm của phơng trình bậc hai cho trớc. ax 2 + bx + c = 0 Phơng pháp: nắm vững hệ thức viet 1 2 1 2 . c x x a b x x a + = = Chú ý: x 1 2 + x 2 2 = (x 1 + x 2 ) 2 2x 1 x 2 x 1 3 + x 2 3 = (x 1 + x 2 ) 3 3x 1 x 2 (x 1 +x 2 ) Bài 1: Gọi x 1 ; x 2 là các nghiệm của phơng trình: x 2 3x 7 = 0. Tính: 5 ( )( ) 4 2 4 1 3 2 3 1 1221 21 21 2 2 2 1 xxF ;xxE ;x3xx3xD ; 1x 1 1x 1 C ;xxB ;xxA +=+= ++= + = =+= Lập phơng trình bậc hai có các nghiệm là 1x 1 và 1x 1 21 . Bài 2: Gọi x 1 ; x 2 là hai nghiệm của phơng trình: 5x 2 3x 1 = 0. Không giải phơng trình, tính giá trị của các biểu thức sau: . x4xx4x 3xx5x3x C ; x 1 x 1 1x x x x 1x x x x B ;x3x2xx3x2xA 2 2 1 2 21 2 221 2 1 2 211 2 1 2 2 1 2 1 2 21 3 22 2 1 3 1 + ++ = + ++ + += += Bài 3: a) Gọi p và q là nghiệm của phơng trình bậc hai: 3x 2 + 7x + 4 = 0. Không giải phơng trình hãy thành lập phơng trình bậc hai với hệ số bằng số mà các nghiệm của nó là 1p q và 1q p . b) Lập phơng trình bậc hai có 2 nghiệm là 2610 1 và 7210 1 + . Bài 4: Cho phơng trình x 2 2(m -1)x m = 0. a) Chứng minh rằng phơng trình luôn luôn có hai nghiệm x 1 ; x 2 với mọi m. b) Với m 0, lập phơng trình ẩn y thoả mãn 1 22 2 11 x 1 xy và x 1 xy +=+= . Bài 5: Không giải phơng trình 3x 2 + 5x 6 = 0. Hãy tính giá trị các biểu thức sau: ( )( ) 2 2 1 1 21 1 2 2 1 1221 x 2x x 2x D ;xxC ; 1x x 1x x B ;2x3x2x3xA + + + == + == Bài 6: Cho phơng trình 2x 2 4x 10 = 0 có hai nghiệm x 1 ; x 2 . Không giải phơng trình hãy thiết lập phơng trình ẩn y có hai nghiệm y 1 ; y 2 thoả mãn: y 1 = 2x 1 x 2 ; y 2 = 2x 2 x 1 Bài 7: Cho phơng trình 2x 2 3x 1 = 0 có hai nghiệm x 1 ; x 2 . Hãy thiết lập phơng trình ẩn y có hai nghiệm y 1 ; y 2 thoả mãn: = = += += 1 2 2 2 2 2 1 1 22 11 x x y x x y b) 2xy 2xy a) Bài 8: Cho phơng trình x 2 + x 1 = 0 có hai nghiệm x 1 ; x 2 . Hãy thiết lập phơng trình ẩn y có hai nghiệm y 1 ; y 2 thoả mãn: 6 =+++ +=+ +=+ +=+ 0.5x5xyy xxyy b) ; 3x3x y y y y x x x x yy a) 21 2 2 2 1 2 2 2 121 21 1 2 2 1 1 2 2 1 21 Bài 9: Cho phơng trình 2x 2 + 4ax a = 0 (a tham số, a 0) có hai nghiệm x 1 ; x 2 . Hãy lập phơng trình ẩn y có hai nghiệm y 1 ; y 2 thoả mãn: 21 2121 21 xx y 1 y 1 và x 1 x 1 yy +=++=+ Dạng 4: Tìm điều kiện của tham số để phơng trình có nghiệm, có nghiệm kép, vô nghiệm. Phơng pháp: Cho phơng trình: ax 2 +bx+c = 0 + Nếu a = 0 thì giải cụ thể + Nếu a.c < 0 thì kết luận phơng trình có hai nghiệm trái dấu + Để pt có nghiệm 0 0a + Để pt có hai nghiệm > 0 0a + Để ptvn < 0 0a Bài 1: a) Cho phơng trình (m 1)x 2 + 2(m 1)x m = 0 (ẩn x). Xác định m để phơng trình có nghiệm kép. Tính nghiệm kép này. b) Cho phơng trình (2m 1)x 2 2(m + 4)x + 5m + 2 = 0. Tìm m để phơng trình có nghiệm. a) Cho phơng trình: (m 1)x 2 2mx + m 4 = 0. - Tìm điều kiện của m để phơng trình có nghiệm. - Tìm điều kiện của m để phơng trình có nghiệm kép. Tính nghiệm kép đó. b) Cho phơng trình: (a 3)x 2 2(a 1)x + a 5 = 0. Tìm a để phơng trình có hai nghiệm phân biệt. Bài 2: a) Cho phơng trình: ( ) 06mm 1x x12m2 12xx 4x 2 224 2 =+ + ++ . Xác định m để phơng trình có ít nhất một nghiệm. b) Cho phơng trình: (m 2 + m 2)(x 2 + 4) 2 4(2m + 1)x(x 2 + 4) + 16x 2 = 0. Xác định m để phơng trình có ít nhất một nghiệm. Dạng 5: Xác định tham số để các nghiệm của phơng trình ax 2 + bx + c = 0 thoả mãn điều kiện cho trớc. Phơng pháp: + Tìm ĐK để pt có nghiệm + áp dụng hệ thức vi et { a c xx a b xx = =+ 21 21 . Bài 1: Cho phơng trình: x 2 2(m + 1)x + 4m = 0 1) Xác định m để phơng trình có nghiệm kép. Tìm nghiệm kép đó. 7 2) Xác định m để phơng trình có một nghiệm bằng 4. Tính nghiệm còn lại. 3) Với điều kiện nào của m thì phơng trình có hai nghiệm cùng dấu (trái dấu) 4) Với điều kiện nào của m thì phơng trình có hai nghiệm cùng dơng (cùng âm). 5) Định m để phơng trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia. 6) Định m để phơng trình có hai nghiệm x 1 ; x 2 thoả mãn 2x 1 x 2 = - 2. 7) Định m để phơng trình có hai nghiệm x 1 ; x 2 sao cho A = 2x 1 2 + 2x 2 2 x 1 x 2 nhận giá trị nhỏ nhất. Bài 2: Định m để phơng trình có nghiệm thoả mãn hệ thức đã chỉ ra: a) (m + 1)x 2 2(m + 1)x + m 3 = 0 ; (4x 1 + 1)(4x 2 + 1) = 18 b) mx 2 (m 4)x + 2m = 0 ; 2(x 1 2 + x 2 2 ) = 5x 1 x 2 c) (m 1)x 2 2mx + m + 1 = 0 ; 4(x 1 2 + x 2 2 ) = 5x 1 2 x 2 2 d) x 2 (2m + 1)x + m 2 + 2 = 0 ; 3x 1 x 2 5(x 1 + x 2 ) + 7 = 0. Bài 3: Định m để phơng trình có nghiệm thoả mãn hệ thức đã chỉ ra: a) x 2 + 2mx 3m 2 = 0 ; 2x 1 3x 2 = 1 b) x 2 4mx + 4m 2 m = 0 ; x 1 = 3x 2 c) mx 2 + 2mx + m 4 = 0 ; 2x 1 + x 2 + 1 = 0 d) x 2 (3m 1)x + 2m 2 m = 0 ; x 1 = x 2 2 e) x 2 + (2m 8)x + 8m 3 = 0 ; x 1 = x 2 2 f) x 2 4x + m 2 + 3m = 0 ; x 1 2 + x 2 = 6. Bài 4: a) Cho phơnmg trình: (m + 2)x 2 (2m 1)x 3 + m = 0. Tìm điều kiện của m để phơng trình có hai nghiệm phân biệt x 1 ; x 2 sao cho nghiệm này gấp đôi nghiệm kia. b) Ch phơng trình bậc hai: x 2 mx + m 1 = 0. Tìm m để phơng trình có hai nghiệm x 1 ; x 2 sao cho biểu thức )xx2(1xx 3x2x R 21 2 2 2 1 21 +++ + = đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó. c) Định m để hiệu hai nghiệm của phơng trình sau đây bằng 2. mx 2 (m + 3)x + 2m + 1 = 0. Bài 5: Cho phơng trình: ax 2 + bx + c = 0 (a 0). Chứng minh rằng điều kiện cần và đủ để phơng trình có hai nghiệm mà nghiệm này gấp đôi nghiệm kia là 9ac = 2b 2 . Bài 6: Cho phơng trình bậc hai: ax 2 + bx + c = 0 (a 0). Chứng minh rằng điều kiện cần và đủ để phơng trình có hai nghiệm mà nghiệm này gấp k lần nghiệm kia (k > 0) là : kb 2 = (k + 1) 2 .ac Dạng 6: So sánh nghiệm của phơng trình bậc hai với một số (dạng toán khó dung BDHSG) Bài 1:Cho phơng trình x 2 (2m 3)x + m 2 3m = 0. Xác định m để phơng trình có hai nghiệm x 1 ; x 2 thoả mãn 1 < x 1 < x 2 < 6. a) Cho phơng trình 2x 2 + (2m 1)x + m 1 = 0. Xác định m để phơng trình có hai nghiệm phân biệt x 1 ; x 2 thoả mãn: - 1 < x 1 < x 2 < 1. Bài 2: Cho f(x) = x 2 2(m + 2)x + 6m + 1. a) Chứng minh rằng phơng trình f(x) = 0 có nghiệm với mọi m. b) Đặt x = t + 2. Tính f(x) theo t, từ đó tìm điều kiện đối với m để phơng trình f(x) = 0 có hai nghiệm lớn hơn 2. Bài 3: Cho phơng trình bậc hai: x 2 + 2(a + 3)x + 4(a + 3) = 0. a) Với giá trị nào của tham số a, phơng trình có nghiệm kép. Tính các nghiệm kép. b) Xác định a để phơng trình có hai nghiệm phân biệt lớn hơn 1. Bài 4: Cho phơng trình: x 2 + 2(m 1)x (m + 1) = 0. 8 a) Tìm giá trị của m để phơng trình có một nghiệm nhỏ hơn 1 và một nghiệm lớn hơn 1. b) Tìm giá trị của m để phơng trình có hai nghiệm nhỏ hơn 2. Bài 5: Tìm m để phơng trình: x 2 mx + m = 0 có nghiệm thoả mãn x 1 - 2 x 2 . Dạng 7: Tìm hệ thức liên hệ giữa hai nghiệm của phơng trình bậc hai không phụ thuộc tham số. Phơng pháp: + Chỉ ra phơng trình có nghiệm + áp dụng hệ thức viet + giải hệ phơng trình sau đó làm mất tham số đa ra 1 pt mới không chứa tham số Bài 1: a) Cho phơng trình: x 2 mx + 2m 3 = 0. Tìm hệ thức liên hệ giữa hai nghiệm của phơng trình không phụ thuộc vào tham số m. b) Cho phơng trình bậc hai: (m 2)x 2 2(m + 2)x + 2(m 1) = 0. Khi phơng trình có nghiệm, hãy tìm một hệ thức giữa các nghiệm không phụ thuộc vào tham số m. c) Cho phơng trình: 8x 2 4(m 2)x + m(m 4) = 0. Định m để phơng trình có hai nghiệm x 1 ; x 2 . Tìm hệ thức giữa hai nghiệm độc lập với m, suy ra vị trí của các nghiệm đối với hai số 1 và 1. Bài 2: Cho phơng trình bậc hai: (m 1) 2 x 2 (m 1)(m + 2)x + m = 0. Khi phơng trình có nghiệm, hãy tìm một hệ thức giữa các nghiệm không phụ thuộc vào tham số m. Bài 3: Cho phơng trình: x 2 2mx m 2 1 = 0. a) Chứng minh rằng phơng trình luôn có hai nghiệm x 1 , x 2 với mọi m. b) Tìm biểu thức liên hệ giữa x 1 ; x 2 không phụ thuộc vào m. c) Tìm m để phơng trình có hai nghiệm x 1 ; x 2 thoả mãn: 2 5 x x x x 1 2 2 1 =+ . Bài 4: Cho phơng trình: (m 1)x 2 2(m + 1)x + m = 0. a) Giải và biện luận phơng trình theo m. b) Khi phơng trình có hai nghiệm phân biệt x 1 ; x 2 : - Tìm một hệ thức giữa x 1 ; x 2 độc lập với m. - Tìm m sao cho |x 1 x 2 | 2. Bài 5: Cho phơng trình (m 4)x 2 2(m 2)x + m 1 = 0. Chứng minh rằng nếu ph- ơng trình có hai nghiệm x 1 ; x 2 thì: 4x 1 x 2 3(x 1 + x 2 ) + 2 = 0. Dạng 8: Mối quan hệ giữa các nghiệm của hai phơng trình bậc hai. Kiến thức cần nhớ: 1/ Định giá trị của tham số để phơng trình này có một nghiệm bằng k (k 0) lần một nghiệm của phơng trình kia: Xét hai phơng trình: ax 2 + bx + c = 0 (1) ax 2 + bx + c = 0 (2) trong đó các hệ số a, b, c, a, b, c phụ thuộc vào tham số m. Định m để sao cho phơng trình (2) có một nghiệm bằng k (k 0) lần một nghiệm của ph- ơng trình (1), ta có thể làm nh sau: i) Giả sử x 0 là nghiệm của phơng trình (1) thì kx 0 là một nghiệm của phơng trình (2), suy ra hệ phơng trình: (*) 0c'kxb'xka' 0cbxax 0 2 0 2 0 2 0 =++ =++ Giải hệ phơng trình trên bằng phơng pháp thế hoặc cộng đại số để tìm m. ii) Thay các giá trị m vừa tìm đợc vào hai phơng trình (1) và (2) để kiểm tra lại. 9 2/ Định giá trị của tham số m để hai phơng trình bậc hai tơng đơng với nhau. Xét hai phơng trình: ax 2 + bx + c = 0 (a 0) (3) ax 2 + bx + c = 0 (a 0) (4) Hai phơng trình (3) và (4) tơng đơng với nhau khi và chỉ khi hai phơng trình có cùng 1 tập nghiệm (kể cả tập nghiệm là rỗng). Do đó, muỗn xác định giá trị của tham số để hai phơng trình bậc hai tơng đơng với nhau ta xét hai trờng hợp sau: i) Trờng hợp cả hai phơng trinhg cuùng vô nghiệm, tức là: < < 0 0 )4( )3( Giải hệ trên ta tịm đợc giá trị của tham số. ii) Trờng hợp cả hai phơng trình đều có nghiệm, ta giải hệ sau: = = (4)(3) (4)(3) (4) (3) PP SS 0 0 Chú ý: Bằng cách đặt y = x 2 hệ phơng trình (*) có thể đa về hệ phơng trình bậc nhất 2 ẩn nh sau: =+ =+ c'ya'xb' caybx Để giải quyết tiếp bài toán, ta làm nh sau: - Tìm điều kiện để hệ có nghiệm rồi tính nghiệm (x ; y) theo m. - Tìm m thoả mãn y = x 2 . - Kiểm tra lại kết quả. - Bài 1: Tìm m để hai phơng trình sau có nghiệm chung: 2x 2 (3m + 2)x + 12 = 0 4x 2 (9m 2)x + 36 = 0 Bài 2: Với giá trị nào của m thì hai phơng trình sau có nghiệm chung. Tìm nghiệm chung đó: a) 2x 2 + (3m + 1)x 9 = 0; 6x 2 + (7m 1)x 19 = 0. b) 2x 2 + mx 1 = 0; mx 2 x + 2 = 0. c) x 2 mx + 2m + 1 = 0; mx 2 (2m + 1)x 1 = 0. Bài 3: Xét các phơng trình sau: ax 2 + bx + c = 0 (1) cx 2 + bx + a = 0 (2) Tìm hệ thức giữa a, b, c là điều kiện cần và đủ để hai phơng trình trên có một nghiệm chung duy nhất. Bài 4: Cho hai phơng trình: x 2 2mx + 4m = 0 (1) x 2 mx + 10m = 0 (2) Tìm các giá trị của tham số m để phơng trình (2) có một nghiệm bằng hai lần một nghiệm của phơng trình (1). Bài 5: Cho hai phơng trình: x 2 + x + a = 0 x 2 + ax + 1 = 0 a) Tìm các giá trị của a để cho hai phơng trình trên có ít nhất một nghiệm chung. b) Với những giá trị nào của a thì hai phơng trình trên tơng đơng. 10 [...]... 3x 21 e) + 2 +4=0 f) 2 x 2 + 4x 6 = 0 x x + x 5 x 4x + 10 2 x 2 48 x 4 2 2 g) 3( 2x + 3x 1) 5( 2x + 3x + 3) + 24 = 0 h) 2 10 = 0 3 x 3 x 2x 13x i) + 2 =6 k) x 2 3x + 5 + x 2 = 3x + 7 2 2x 5x + 3 2x + x + 3 Bài 3: a) 6x5 29x4 + 27x3 + 27x2 29x +6 = 0 b) 10x4 77x3 + 105 x2 77x + 10 = 0 c) (x 4,5)4 + (x 5,5)4 = 1 d) (x2 x +1)4 10x2(x2 x + 1)2 + 9x4 = 0 Bài tập về nhà: Giải các phơng... phân số đó 4 24 Bài 4: 17 Nếu thêm 4 vào tử và mẫu của một phân số thì giá trị của phân số giảm 1 Nếu bớt 1 vào cả tử và mẫu, phân số tăng 3 Tìm phân số đó 2 Chủ đề 6: Phơng trình quy về phơng trình bậc hai Dạng 1: Phơng trình có ẩn số ở mẫu Phơng pháp: + tìm đk để mẫu có nghĩa + Quy đồng mẫu thức + khử mẫu, giải phơng trình + Thử các nghiệm vừa giải đợc thay vào điều kiện Giải các phơng trình sau:... = 5 3) 4x + 6y = 10 4x 6y = 9 6) 10x 15y = 18 3x 4y + 2 = 0 2x + 5y = 3 4) ; 5) ; 5x + 2y = 14 3x 2y = 14 Bài 2: Giải các hệ phơng trình sau: ( 3x + 2 )( 2y 3) = 6xy ( 2x - 3)( 2y + 4 ) = 4x ( y 3) + 54 1) ; 2) ; ( 4x + 5)( y 5) = 4xy ( x + 1)( 3y 3) = 3y( x + 1) 12 7x + 5y - 2 y + 27 2y - 5x +5 = 2x x + 3y = 8 3 4 3) ; 4) x + 1 + y = 6y 5x 6x - 3y + 10 = 5 3 5x + 6y... + 2)2 = 0 4 a) x4 4x3 9(x2 4x) = 0 c) x4 10x3 + 25x2 36 = 0 b) x4 6x3 + 9x2 100 = 0 d) x4 25x2 + 60x 36 = 0 a) x3 x2 4x + 4 = 0 c) x3 x2 + 2x 8 = 0 e) x3 2x2 4x 3 = 0 b) 2x3 5x2 + 5x 2 = 0 d) x3 + 2x2 + 3x 6 = 0 a) (x2 x)2 8(x2 x) + 12 = 0 b) (x4 + 4x2 + 4) 4(x2 + 2) 77 = 0 5 6 2 2x 1 2x 1 d) 4 +3= 0 x+2 x+2 c) x 4x 10 - 3 ( x + 2)( x 6) = 0 2 e) x + 5 x + x... nghiệm, vô số nghiệm Phơng pháp: Hệ phơng trình có nghiệm duy nhất a b c = a' b' c' a b a' b' Hpt có nghiệm a = b = c a' b' c' Hpt vô nghiệm 12 a b a' b' Một só ví dụ trong sách hớng dẫn ôn thi vào lớp 10 của BGD&ĐT B - Một số hệ bậc hai đơn giản: Dạng 1: Hệ đối xứng loại I tìm hai số u, v biết Phơng pháp: Dùng hệ thức vi ét, đa về phơng trình bậc hai x + y + xy = 11 Ví dụ: Giải hệ phơng trình ... 7 x 2 + xy + y 2 = 4 2) x + xy + y = 2 xy + x + y = 19 3) 2 2 x y + xy = 84 x 2 3xy + y 2 = 1 4) 2 3x xy + 3y 2 = 13 ( x 2 + 1)( y 2 + 1) = 10 6) ( x + y )( xy 1) = 3 2 2 2 x + xy + y = 19( x y ) 8) 2 x xy + y 2 = 7( x y ) x y + y x = 30 10) x x + y y = 35 ( x + 1)( y + 1) = 8 5) x ( x + 1) + y( y + 1) + xy = 17 x + xy + y = 2 + 3 2 7) 2 x + y 2 = 6 ( x y ) 2 ( x y ) = 6 9)... xứng loại II Phơng pháp: Lấy hai phơng trình trừ cho nhau đợc một phơng trình mới giải phơng trình này thế nghiệm vào một trong hai phơng ban đầu 3 x + 1 = 2y Ví dụ: Giải hệ phơng trình 3 y + 1 = 2 x Bài tập tơng tự: Giải các hệ phơng trình sau: 2 x 3x = y 9) 2 y 3y = x 3 x = 7x + 3y 10) 3 y = 7y + 3x 13 x 2 + 1 = 3y 1) 2 y + 1 = 3x x 2 y + 2 = y 2 2) 2 xy + 2 = x 2 x 3 = 2x + y 3)... + 2 xy 11 = 0 4) xy + y x = 4 2( x + y ) 2 3( x + y ) 5 = 0 5) x y 5 = 0 5( x y ) 2 + 3( x y ) = 8 6) 2 x + 3 y = 12 x 2 y + 2 = 0 7) 2 2 y x = 0 x 2 y = 0 8) x y + 2 = 0 2x 3y = 5 10) 2 2 x y = 40 x 2 + y 2 2 xy = 1 9) 2 2 x + 2 y 2 2 xy y = 0 3x + 2y = 36 11) ( x 2)( y 3) = 18 xy + 2x y 2 = 0 12) xy 3x + 2y = 0 x 2 + y 2 4x 4y 8 = 0 14) 2 x + y 2 + 4x + 4y... đến sớm hơn 1 giờ Tính quãng đờng AB và thời gian dự định đi lúc đầu Bài 2: Một ngời đi xe máy từ A đến B cách nhau 120 km với vận tốc dự định trớc Sau 1 khi đợc quãng đờng AB ngời đó tăng vận tốc thêm 10 km/h trên quãng đờng còn lại 3 Tìm vận tốc dự định và thời gian xe lăn bánh trên đờng, biết rằng ngời đó đến B sớm hơn dự định 24 phút Bài 3: Một canô xuôi từ bến sông A đến bến sông B với vận tốc 30... trong 3 giờ thì đợc giờ và vòi B chảy trong 1 giờ 30 phút thì đợc 3 công 4 4 hồ Nếu vòi A chảy trong 3 5 1 hồ Hỏi nếu chảy một mình mỗI vòi 2 chảy trong bao lâu mới đầy hồ Bài 3: Hai vòi nớc cùng chảy vào một bể thì sau 6 giờ đầy bể Nếu mỗi vòi chảy một mình cho đầy bể thì vòi II cần nhiều thời gian hơn vòi I là 5 giờ Tính thời gian mỗi vòi chảy một mình đầy bể? Dạng 3: Toán liên quan đến tỉ lệ phần . 3: a) 6x 5 29x 4 + 27x 3 + 27x 2 29x +6 = 0 b) 10x 4 77x 3 + 105 x 2 77x + 10 = 0 c) (x 4,5) 4 + (x 5,5) 4 = 1 d) (x 2 x +1) 4 10x 2 (x 2 x + 1) 2 + 9x 4 = 0 Bài tập về nhà: Giải. thừa số vào trong dấu căn. 22 x 7 x e) ; x25 x 5)(x d) ; 5 2 x c) 0);x (với x 2 x b) ; 3 5 5 3 a) > Bài 2: Thực hiện phép tính. 33 3; 3 33 3152631526 h) ;2142021420 g) 725725 f) ;10: )4503200550(15. g) 725725 f) ;10: )4503200550(15 c) 26112611 e) ;0,4)32) (102 38( b) ;526526 d) ;877)714228( a) +++ ++ ++ ++++ Bài 3: Thực hiện phép tính. 102 7 1528625 c) 57 1 :) 31 515 21 714 b) 6 1 ) 3 216 28 632 (