1. Trang chủ
  2. » Công Nghệ Thông Tin

Oracle Built−in Packages- P13 potx

5 268 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Cấu trúc

  • Table of Contents

  • A. What's on the Companion Disk?

    • A.1 Installing the Guide

    • A.2 Using the Guide

  • 1. Introduction

    • 1.1 The Power of Built-in Packages

      • 1.1.1 A Kinder , More Sharing Oracle

    • 1.2 Built-in Packages Covered in This Book

      • 1.2.1 Application Development Packages

      • 1.2.2 Server Management Packages

      • 1.2.3 Distributed Database Packages

    • 1.3 Using Built-in Packages

      • 1.3.1 What Is a Package?

      • 1.3.2 Controlling Access with Packages

      • 1.3.3 Referencing Built-in Package Elements

      • 1.3.4 Exception Handling and Built-in Packages

      • 1.3.5 Encapsulating Access to the Built-in Packages

      • 1.3.6 Calling Built-in Packaged Code from Oracle Developer/2000 Release 1

      • 1.3.7 Accessing Built-in Packaged Technology from Within SQL

    • 1.4 Examining Built-in Package Source Code

      • 1.4.1 The STANDARD Package

      • 1.4.2 The DBMS_STANDARD Package

  • 2. Executing Dynamic SQL and PL/SQL

    • 2.1 Examples of Dynamic SQL

    • 2.2 Getting Started with DBMS_SQL

      • 2.2.1 Creating the DBMS_SQL Package

      • 2.2.2 Security and Privilege Issues

      • 2.2.3 DBMS_SQL Programs

      • 2.2.4 Types of Dynamic SQL

      • 2.2.5 DBMS_SQL Exceptions

      • 2.2.6 DBMS_SQL Nonprogram Elements

    • 2.3 The DBMS_SQL Interface

      • 2.3.1 Processing Flow of Dynamic SQL

      • 2.3.2 Opening the Cursor

      • 2.3.3 Parsing the SQL Statement

      • 2.3.4 Binding Values into Dynamic SQL

      • 2.3.5 Defining Cursor Columns

      • 2.3.6 Executing the Cursor

      • 2.3.7 Fetching Rows

      • 2.3.8 Retrieving Values

      • 2.3.9 Closing the Cursor

      • 2.3.10 Checking Cursor Status

      • 2.3.11 Describing Cursor Columns

    • 2.4 Tips on Using Dynamic SQL

      • 2.4.1 Some Restrictions

      • 2.4.2 Privileges and Execution Authority with DBMS_SQL

      • 2.4.3 Combining Operations

      • 2.4.4 Minimizing Memory for Cursors

      • 2.4.5 Improving the Performance of Dynamic SQL

      • 2.4.6 Problem-Solving Dynamic SQL Errors

      • 2.4.7 Executing DDL in PL/SQL

      • 2.4.8 Executing Dynamic PL/SQL

    • 2.5 DBMS_SQL Examples

      • 2.5.1 A Generic Drop_Object Procedure

      • 2.5.2 A Generic Foreign Key Lookup Function

      • 2.5.3 A Wrapper for DBMS_SQL .DESCRIBE_COLUMNS

      • 2.5.4 Displaying Table Contents with Method 4 Dynamic SQL

      • 2.5.5 Indirect Referencing in PL/SQL

      • 2.5.6 Array Processing with DBMS_SQL

      • 2.5.7 Using the RETURNING Clause in Dynamic SQL

  • 3. Intersession Communication

    • 3.1 DBMS_PIPE: Communicating Between Sessions

      • 3.1.1 Getting Started with DBMS_PIPE

      • 3.1.2 How Database Pipes Work

      • 3.1.3 Managing Pipes and the Message Buffer

      • 3.1.4 Packing and Unpacking Messages

      • 3.1.5 Sending and Receiving Messages

      • 3.1.6 Tips on Using DBMS_PIPE

      • 3.1.7 DBMS_PIPE Examples

    • 3.2 DBMS_ALERT: Broadcasting Alerts to Users

      • 3.2.1 Getting Started with DBMS_ALERT

      • 3.2.2 The DBMS_ALERT Interface

      • 3.2.3 DBMS_ALERT Examples

  • 4. User Lock and Transaction Management

    • 4.1 DBMS_LOCK: Creating and Managing Resource Locks

      • 4.1.1 Getting Started with DBMS_LOCK

      • 4.1.2 The DBMS_LOCK Interface

      • 4.1.3 Tips on Using DBMS_LOCK

      • 4.1.4 DBMS_LOCK Examples

    • 4.2 DBMS_TRANSACTION: Interfacing to SQL Transaction Statements

      • 4.2.1 Getting Started with DBMS_TRANSACTION

      • 4.2.2 Advising Oracle About In-Doubt Transactions

      • 4.2.3 Committing Data

      • 4.2.4 Rolling Back Changes

      • 4.2.5 Setting Transaction Characteristics

      • 4.2.6 Cleaning Up Transaction Details

      • 4.2.7 Returning Transaction Identifiers

  • 5. Oracle Advanced Queuing

    • 5.1 Oracle AQ Concepts

      • 5.1.1 General Features

      • 5.1.2 Enqueue Features

      • 5.1.3 Dequeue Features

      • 5.1.4 Propagation Features

      • 5.1.5 A Glossary of Terms

      • 5.1.6 Components of Oracle AQ

      • 5.1.7 Queue Monitor

      • 5.1.8 Data Dictionary Views

    • 5.2 Getting Started with Oracle AQ

      • 5.2.1 Installing the Oracle AQ Facility

      • 5.2.2 Database Initialization

      • 5.2.3 Authorizing Accounts to Use Oracle AQ

    • 5.3 Oracle AQ Nonprogram Elements

      • 5.3.1 Constants

      • 5.3.2 Object Names

      • 5.3.3 Queue Type Names

      • 5.3.4 Agents Object Type

      • 5.3.5 Recipient and Subscriber List Table Types

      • 5.3.6 Message Properties Record Type

      • 5.3.7 Enqueue Options Record Type

      • 5.3.8 Dequeue Options Record Type

      • 5.3.9 Oracle AQ Exceptions

    • 5.4 DBMS_AQ: Interfacing to Oracle AQ (Oracle8 only)

      • 5.4.1 Enqueuing Messages

      • 5.4.2 Dequeuing Messages

    • 5.5 DBMS_AQADM: Performing AQ Administrative Tasks (Oracle8 only)

      • 5.5.1 Creating Queue Tables

      • 5.5.2 Creating and Starting Queues

      • 5.5.3 Managing Queue Subscribers

      • 5.5.4 Stopping and Dropping Queues

      • 5.5.5 Managing Propagation of Messages

      • 5.5.6 Verifying Queue Types

      • 5.5.7 Starting and Stopping the Queue Monitor

    • 5.6 Oracle AQ Database Objects

      • 5.6.1 Objects Per Queue Table

      • 5.6.2 Data Dictionary Objects

    • 5.7 Oracle AQ Examples

      • 5.7.1 Improving AQ Ease of Use

      • 5.7.2 Working with Prioritized Queues

      • 5.7.3 Building a Stack with AQ Using Sequence Deviation

      • 5.7.4 Browsing a Queue's Contents

      • 5.7.5 Searching by Correlation Identifier

      • 5.7.6 Using Time Delay and Expiration

      • 5.7.7 Working with Message Groups

      • 5.7.8 Working with Multiple Consumers

  • 6. Generating Output from PL/SQL Programs

    • 6.1 DBMS_OUTPUT: Displaying Output

      • 6.1.1 Getting Started with DBMS_OUTPUT

      • 6.1.2 Enabling and Disabling Output

      • 6.1.3 Writing to the DBMS_OUTPUT Buffer

      • 6.1.4 Retrieving Data from the DBMS_OUTPUT Buffer

      • 6.1.5 Tips on Using DBMS_OUTPUT

      • 6.1.6 DBMS_OUTPUT Examples

    • 6.2 UTL_FILE: Reading and Writing Server-side Files

      • 6.2.1 Getting Started with UTL_FILE

      • 6.2.2 Opening Files

      • 6.2.3 Reading from Files

      • 6.2.4 Writing to Files

      • 6.2.5 Closing Files

      • 6.2.6 Tips on Using UTL_FILE

      • 6.2.7 UTL_FILE Examples

  • 7. Defining an Application Profile

    • 7.1 Getting Started with DBMS_APPLICATION_INFO

      • 7.1.1 DBMS_APPLICATION_INFO Programs

      • 7.1.2 The V$ Virtual Tables

      • 7.1.3 DBMS_APPLICATION_INFO Nonprogram Elements

    • 7.2 DBMS_APPLICATION_INFO Interface

      • 7.2.1 The DBMS_APPLICATION_INFO.READ_CLIENT_INFO procedure

      • 7.2.2 The DBMS_APPLICATION_INFO.READ_MODULE procedure

      • 7.2.3 The DBMS_APPLICATION_INFO.SET_ACTION procedure

      • 7.2.4 The DBMS_APPLICATION_INFO.SET_CLIENT_INFO procedure

      • 7.2.5 The DBMS_APPLICATION_INFO.SET_MODULE procedure

      • 7.2.6 The DBMS_APPLICATION_INFO.SET_SESSION_LONGOPS procedure

    • 7.3 DBMS_APPLICATION_INFO Examples

      • 7.3.1 About the register_app Package

      • 7.3.2 The action Procedure

      • 7.3.3 The set_stats Procedure

      • 7.3.4 The Information Procedures

      • 7.3.5 Using the register_app Package

      • 7.3.6 Covering DBMS_APPLICATION_INFO

      • 7.3.7 Monitoring Application SQL Resource Consumption

      • 7.3.8 Session Monitoring and Three-Tier Architectures

      • 7.3.9 Tracking Long-Running Processes

  • 8. Managing Large Objects

    • 8.1 Getting Started with DBMS_LOB

      • 8.1.1 DBMS_LOB Programs

      • 8.1.2 DBMS_LOB Exceptions

      • 8.1.3 DBMS_LOB Nonprogram Elements

      • 8.1.4 About the Examples

    • 8.2 LOB Concepts

      • 8.2.1 LOB Datatypes

      • 8.2.2 BFILE Considerations

      • 8.2.3 Internal LOB Considerations

    • 8.3 DBMS_LOB Interface

      • 8.3.1 Working with BFILEs

      • 8.3.2 Reading and Examining LOBs

      • 8.3.3 Updating BLOBs, CLOBs, and NCLOBs

  • 9. Datatype Packages

    • 9.1 DBMS_ROWID: Working with the ROWID Pseudo-Column (Oracle8 only)

      • 9.1.1 Getting Started with DBMS_ROWID

      • 9.1.2 ROWID Concepts

      • 9.1.3 The DBMS_ROWID Interface

    • 9.2 UTL_RAW: Manipulating Raw Data

      • 9.2.1 Getting Started with UTL_RAW

      • 9.2.2 Raw Data Manipulation Concepts

      • 9.2.3 The UTL_RAW Interface

      • 9.2.4 UTL_REF: Referencing Objects (Oracle8.0.4)

      • 9.2.5 UTL_REF Interface

      • 9.2.6 UTL_REF Example

  • 10. Miscellaneous Packages

    • 10.1 DBMS_UTILITY: Performing Miscellaneous Operations

      • 10.1.1 Getting Started with DBMS_UTILITY

      • 10.1.2 The DBMS_UTILITY Interface

    • 10.2 DBMS_DESCRIBE: Describing PL/SQL Program Headers

      • 10.2.1 Getting Started with DBMS_DESCRIBE

      • 10.2.2 Explaining DBMS_DESCRIBE Results

      • 10.2.3 DBMS_DESCRIBE Example

    • 10.3 DBMS_DDL: Compiling and Analyzing Objects

      • 10.3.1 Getting Started with DBMS_DDL

      • 10.3.2 Compiling PL/SQL Objects

      • 10.3.3 Computing Statistics for an Object

      • 10.3.4 Setting Referenceability of Tables

    • 10.4 DBMS_RANDOM: Generating Random Numbers (Oracle8 Only)

      • 10.4.1 Getting Started with DBMS_RANDOM

      • 10.4.2 DBMS_RANDOM Interface

  • 11. Managing Session Information

    • 11.1 DBMS_SESSION: Managing Session Information

      • 11.1.1 Getting Started with DBMS_SESSION

      • 11.1.2 Modifying Session Settings

      • 11.1.3 Obtaining Session Information

      • 11.1.4 Managing Session Resources

      • 11.1.5 DBMS_SESSION Examples

    • 11.2 DBMS_System: Setting Events for Debugging

      • 11.2.1 Getting Started with DBMS_SYSTEM

      • 11.2.2 DBMS_SYSTEM Interface

      • 11.2.3 DBMS_SYSTEM Examples

  • 12. Managing Server Resources

    • 12.1 DBMS_SPACE: Obtaining Space Information

      • 12.1.1 Getting Started with DBMS_SPACE

      • 12.1.2 The DBMS_SPACE Interface

      • 12.1.3 DBMS_SPACE Examples

    • 12.2 DBMS_SHARED_POOL: Pinning Objects

      • 12.2.1 Getting Started with DBMS_SHARED_POOL

      • 12.2.2 Pinning and Unpinning Objects

      • 12.2.3 Monitoring and Modifying Shared Pool Behavior

      • 12.2.4 DBMS_SHARED_POOL Examples

  • 13. Job Scheduling in the Database

    • 13.1 Getting Started with DBMS_ JOB

      • 13.1.1 DBMS_JOB Programs

      • 13.1.2 Job Definition Parameters

      • 13.2.1 INIT.ORA Parameters and Background Processes

      • 13.2.2 Job Execution and the Job Execution Environment

      • 13.2.3 Miscellaneous Notes

      • 13.2.4 DBMS_JOB Interface

      • 13.2.5 Submitting Jobs to the Job Queue

      • 13.2.6 Modifying Job Characteristics

      • 13.2.7 Removing Jobs and Changing Job Execution Status

      • 13.2.8 Transferring Jobs

    • 13.2 Job Queue Architecture

    • 13.3 Tips on Using DBMS_JOB

      • 13.3.1 Job Intervals and Date Arithmetic

      • 13.3.2 Viewing Job Information in the Data Dictionary

      • 13.3.3 DBMS_IJOB: Managing Other Users' Jobs

    • 13.4 DBMS_JOB Examples

      • 13.4.1 Tracking Space in Tablespaces

      • 13.4.2 Fixing Broken Jobs Automatically

      • 13.4.3 Self-Modifying and Self-Aware Jobs

  • 14. Snapshots

    • 14.1 DBMS_SNAPSHOT: Managing Snapshots

      • 14.1.1 Getting Started with DBMS_SNAPSHOT

      • 14.1.2 Using the I_AM_A_REFRESH Package State Variable

      • 14.1.3 Refreshing Snapshots

      • 14.1.4 Purging the Snapshot Log

      • 14.1.5 Reorganizing Tables

      • 14.1.6 Registering Snapshots

      • 14.2.1 Getting Started with DBMS_REFRESH

      • 14.2.2 Creating and Destroying Snapshot Groups

      • 14.2.3 Adding and Subtracting Snapshots from Snapshot Groups

      • 14.2.4 Altering Properties of a Snapshot Group

      • 14.2.5 Manually Refreshing Snapshot Groups

    • 14.2 DBMS_REFRESH: Managing Snapshot Groups

    • 14.3 DBMS_OFFLINE_SNAPSHOT: Performing Offline Snapshot Instantiation

      • 14.3.1 Getting Started with DBMS_OFFLINE_SNAPSHOT

      • 14.3.2 DBMS_OFFLINE_SNAPSHOT Interface

    • 14.4 DBMS_REPCAT: Managing Snapshot Replication Groups

      • 14.4.1 Getting Started with DBMS_REPCAT

      • 14.4.2 Creating and Dropping Snapshot Replication Groups

      • 14.4.3 Adding and Removing Snapshot Replication Group Objects

      • 14.4.4 Altering a Snapshot Replication Group's Propagation Mode

      • 14.4.5 Manually Refreshing a Snapshot Replication Group

      • 14.4.6 Switching the Master of a Snapshot Replication Group

  • 15. Advanced Replication

    • 15.1 DBMS_REPCAT_AUTH: Setting Up Administrative Accounts

      • 15.1.1 Getting Started with DBMS_REPCAT_AUTH

      • 15.1.2 Granting and Revoking Surrogate SYS Accounts

      • 15.1.3 Granting and Revoking Propagator Accounts (Oracle8)

    • 15.2 DBMS_REPCAT_ADMIN: Setting Up More Administrator Accounts

      • 15.2.1 Getting Started with DBMS_REPCAT_ADMIN

      • 15.2.2 Creating and Dropping Replication Administrator Accounts

    • 15.3 DBMS_REPCAT: Replication Environment Administration

      • 15.3.1 Getting Started with DBMS_REPCAT

      • 15.3.2 Replication Groups with DBMS_REPCAT

      • 15.3.3 Replicated Objects with DBMS_REPCAT

      • 15.3.4 Replication Support with DBMS_REPCAT

      • 15.3.5 Adding and Removing Master Sites with DBMS_REPCAT

      • 15.3.6 Maintaining the Repcatlog Queue with DBMS_REPCAT

      • 15.3.7 Quiescence with DBMS_REPCAT

      • 15.3.8 Miscellaneous DBMS_REPCAT Procedures

    • 15.4 DBMS_OFFLINE_OG: Performing Site Instantiation

      • 15.4.1 Getting Started with DBMS_OFFLINE_OG

      • 15.4.2 DBMS_OFFLINE_OG Interface

    • 15.5 DBMS_RECTIFIER_DIFF: Comparing Replicated Tables

      • 15.5.1 Getting Started with DBMS_RECTIFIER_DIFF

      • 15.5.2 DBMS_RECTIFIER_DIFF Interface

    • 15.6 DBMS_REPUTIL: Enabling and Disabling Replication

      • 15.6.1 Getting Started with DBMS_REPUTIL

      • 15.6.2 DBMS_REPUTIL Interface

  • 16. Conflict Resolution

    • 16.1 Getting Started with DBMS_REPCAT

      • 16.1.1 DBMS_REPCAT Programs

      • 16.1.2 DBMS-REPCAT Exceptions

      • 16.1.3 DBMS-REPCAT Nonprogram Elements

      • 16.1.4 Data Dictionary Views

    • 16.2 Column Groups with DBMS_REPCAT

      • 16.2.1 About Column Groups

      • 16.2.2 Creating and Dropping Column Groups

      • 16.2.3 Modifying Existing Column Groups

    • 16.3 Priority Groups with DBMS_REPCAT

      • 16.3.1 About Priority Groups

      • 16.3.2 Creating, Maintaining, and Dropping Priority Groups

      • 16.3.3 Creating and Maintaining Priorities Within a Priority Group

      • 16.3.4 Dropping Priorities from a Priority Group

    • 16.4 Site Priority Groups with DBMS_REPCAT

      • 16.4.1 About Site Priority Groups

      • 16.4.2 Creating, Maintaining, and Dropping Site Priorities

      • 16.4.3 Maintaining Site Priorities

    • 16.5 Assigning Resolution Methods with DBMS_REPCAT

      • 16.5.1 About Resolution Methods

    • 16.6 Monitoring Conflict Resolution with DBMS_REPCAT

      • 16.6.1 About Monitoring

  • 17. Deferred Transactions and Remote Procedure Calls

    • 17.1 About Deferred Transactions and RPCs

      • 17.1.1 About Remote Destinations

      • 17.1.2 Data Dictionary Views

    • 17.2 DBMS_DEFER_SYS: Managing Deferred Transactions

      • 17.2.1 Getting Started with DBMS_DEFER_SYS

      • 17.2.2 Adding and Deleting Default Destinations

      • 17.2.3 Copying Deferred Transactions to New Destinations

      • 17.2.4 Maintenance Procedures

      • 17.2.5 Propagating Deferred RPCs

      • 17.2.6 Scheduling Propagation (Oracle8 only)

    • 17.3 DBMS_DEFER: Building Deferred Calls

      • 17.3.1 Getting Started with DBMS_DEFER

      • 17.3.2 Basic RPCs

      • 17.3.3 Parameterized RPCs

    • 17.4 DBMS_DEFER_QUERY: Performing Diagnostics and Maintenance

      • 17.4.1 Getting Started with DBMS_DEFER_QUERY

    • Table of Contents

      • Part I: Overview

      • Part II: Application Development Packages

      • Part III: Server Management Packages

      • Part IV: Distributed Database Packages

  • Structure of This Book

Nội dung

Copyright (c) 2000 O'Reilly & Associates. All rights reserved. [Appendix A] What's on the Companion Disk? 2.2.5 DBMS_SQL Exceptions 51 Chapter 2 Executing Dynamic SQL and PL/SQL 2.3 The DBMS_SQL Interface DBMS_SQL is an extremely powerful package, but it is also one of the most complicated built−in packages to use. Sure, you can construct and execute any SQL statement you desire. The trade−off for that flexibility is that you have to do lots more work to get your SQL−related job done. You must specify all aspects of the SQL statement, usually with a wide variety of procedure calls, from the SQL statement itself down to the values of bind variables and the datatypes of columns in SELECT statements. Before I explore each of the programs that implement these steps, let's review the general flow of events that must occur in order to use DBMS_SQL successfully. 2.3.1 Processing Flow of Dynamic SQL In order to execute dynamic SQL with DBMS_SQL you must follow these steps; see Figure 2.1 for a graphical summary: Figure 2.1: DBMS_SQL execution flow 52 1. Open a cursor. When you open a cursor, you ask the RDBMS to set aside and maintain a valid cursor structure for your use with future DBMS_SQL calls. The RDBMS returns an INTEGER handle to this cursor. You will use this handle in all future calls to DBMS_SQL programs for this dynamic SQL statement. Note that this cursor is completely distinct from normal, native PL/SQL cursors. 2. Parse the SQL statement. Before you can specify bind variable values and column structures for the SQL statement, it must be parsed by the RDBMS. This parse phase verifies that the SQL statement is properly constructed. It then associates the SQL statement with your cursor handle. Note that when you parse a DDL statement, it is also executed immediately. Upon successful completion of the DDL parse, the RDBMS also issues an implicit commit. This behavior is consistent with that of SQL*Plus. 3. Bind all host variables. If the SQL statement contains references to host PL/SQL variables, you will include placeholders to those variables in the SQL statement by prefacing their names with a colon, as in :salary. You must then bind the actual value for that variable into the SQL statement. 4. [Appendix A] What's on the Companion Disk? 53 Define the columns in SELECT statements. Each column in the list of the SELECT must be defined. This define phase sets up a correspondence between the expressions in the list of the SQL statement and the local PL/SQL variables receiving the values when a row is fetched (see COLUMN_VALUE). This step is only necessary for SELECT statements and is roughly equivalent to the INTO clause of an implicit SELECT statement in PL/SQL. 5. Execute the SQL statement. Execute the specified cursor −− that is, its associated SQL statement. If the SQL statement is an INSERT, UPDATE, or DELETE, the EXECUTE command returns the numbers of rows processed. Otherwise, you should ignore that return value. 6. Fetch rows from the dynamic SQL query. If you execute a SQL statement, you must then fetch the rows from the cursor, as you would with a normal PL/SQL cursor. When you fetch, however, you do not fetch directly into local PL/SQL variables. 7. Retrieve values from the execution of the dynamic SQL. If the SQL statement is a query, retrieve values from the SELECT expression list using COLUMN_VALUE. If you have passed a PL/SQL block containing calls to stored procedures, use VARIABLE_VALUE to retrieve the values returned by those procedures. 8. Close the cursor. As with normal PL/SQL cursors, always clean up by closing the cursor when you are done. This releases the memory associated with the cursor. 2.3.2 Opening the Cursor Before you perform any kind of dynamic SQL, you must obtain a pointer to memory in which the dynamic SQL will be managed. You do this by "opening the cursor," at which point Oracle sets aside memory for a cursor data area and then returns a pointer to that area. These pointers are different from the cursors defined by other elements of Oracle, such as the Oracle Call Interface (OCI) and precompiler interfaces and even PL/SQL's static cursors. 2.3.2.1 The DBMS_SQL.OPEN_CURSOR function Use this function to open a cursor. Here's the specification: FUNCTION DBMS_SQL.OPEN_CURSOR RETURN INTEGER; Notice that you do not provide a name for the cursor. You are simply requesting space in shared memory for the SQL statement and the data affected by that statement. You can use a cursor to execute the same or different SQL statements more than once. When you reuse a cursor, the contents of the cursor data area are reset if a new SQL statement is parsed. You do not have to close and reopen a cursor before you reuse it. You absolutely do not have to open a new cursor for each new dynamic SQL statement you want to process. When you are done with the cursor, you should remove it from memory with a call to the CLOSE_CURSOR procedure. The following example demonstrates the use of a single cursor for two different SQL statements. I declare a cursor, use it to create an index, and then use it to update rows in the emp table. CREATE OR REPLACE PROCEDURE do_two_unrelated_actions (tab_in IN VARCHAR2, col_in IN VARCHAR2, val_in IN NUMBER) [Appendix A] What's on the Companion Disk? 2.3.2 Opening the Cursor 54 IS cur BINARY_INTEGER := DBMS_SQL.OPEN_CURSOR; fdbk BINARY_INTEGER; BEGIN /* Piece together a CREATE INDEX statement. */ DBMS_SQL.PARSE (cur, 'CREATE INDEX ind_' || tab_in || '$' || col_in || ' ON ' || tab_in || '(' || col_in || ')', DBMS_SQL.NATIVE); fdbk := DBMS_SQL.EXECUTE (cur); /* Use the same cursor to do the update. */ DBMS_SQL.PARSE (cur, 'UPDATE ' || tab_in || ' SET ' || col_in || ' = :newval', DBMS_SQL.NATIVE); DBMS_SQL.BIND_VARIABLE (cur, 'newval', val_in); fdbk := DBMS_SQL.EXECUTE (cur); /* Free up the memory from the cursor. */ DBMS_SQL.CLOSE_CURSOR (cur); END; / 2.3.2.2 The DBMS_SQL.IS_OPEN function The IS_OPEN function returns TRUE if the specified cursor is already open, and FALSE if the cursor has been closed or if the value does not point to a dynamic cursor, FUNCTION DBMS_SQL.IS_OPEN (c IN INTEGER) RETURN BOOLEAN; where c is the pointer to the cursor. This function corresponds to the %ISOPEN attribute for regular PL/SQL cursors. 2.3.3 Parsing the SQL Statement Once you have allocated a pointer to a cursor, you can then associate that pointer with a SQL statement. You do this by parsing the SQL statement with a call to the PARSE procedure. The parse phase checks the statement's syntax, so if there is a syntax error, the call to PARSE will fail and an exception will be raised. 2.3.3.1 The DBMS_SQL.PARSE procedure The PARSE procedure immediately parses the statement specified. It comes in two formats. The first, as follows, will be used in almost every case. For very large SQL statments, use the PL/SQL table−based version described in the next section. PROCEDURE DBMS_SQL.PARSE (c IN INTEGER, statement IN VARCHAR2, language_flag IN INTEGER); The parameters for this procedure are summarized in the following table. Parameter Description c The pointer to the cursor or memory area for this SQL statement. statement The SQL statement to be parsed and associated with the cursor. This statement should not be terminated with a semicolon unless it is a PL/SQL block. language_flag A flag determing how Oracle will handle the statement. Valid options are DBMS_SQL.V6, DBMS_SQL.V7, and DBMS_SQL.NATIVE. Use DBMS_SQL.NATIVE unless otherwise [Appendix A] What's on the Companion Disk? 2.3.2 Opening the Cursor 55 . point Oracle sets aside memory for a cursor data area and then returns a pointer to that area. These pointers are different from the cursors defined by other elements of Oracle, such as the Oracle. Interface DBMS_SQL is an extremely powerful package, but it is also one of the most complicated built−in packages to use. Sure, you can construct and execute any SQL statement you desire. The. be terminated with a semicolon unless it is a PL/SQL block. language_flag A flag determing how Oracle will handle the statement. Valid options are DBMS_SQL.V6, DBMS_SQL.V7, and DBMS_SQL.NATIVE.

Ngày đăng: 07/07/2014, 00:20

TỪ KHÓA LIÊN QUAN