S p c o n d Edition This page intentionally left blank S m n d Edition John Dirk Walecka College of William and Mary, USA World Scientific Imperial College Press Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE and World Scientific Publishing Co Pte Ltd Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-PublicationData A catalogue record for this book is available from the British Library THEORETICAL NUCLEAR AND SUBNUCLEAR PHYSICS Second Edition Copyright 2004 by Imperial College Press and World Scientific Publishing Co Pte Ltd All rights reserved This book, or parts thereof may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA In this case permission to photocopy is not required from the publisher ISBN 981-238-795-1 ISBN 981-238-898-2 (pbk) Printed in Singapore by World Scientific Printers ( S ) Pte Ltd Dedicated to the memory of James Dirk Walecka 1966-1993 This page intentionally left blank Preface I was delighted when World Scientific Publishing Company expressed enthusiasm for printing the second edition of this book, Theoretical Nuclear and Subnuclear Physics, originally published by Oxford University Press in 1995 I am also pleased that Oxford has given, “(unlimited) permission to use the material of the first edition in the second one ” The original motivation for writing this book was two-fold First, I wanted to lay out the intellectual foundation for the construction of CEBAF, the Continuous Electron Beam Accelerator Facility, of which I was Scientific Director in its initial phase from 1986-1992 Second, I wanted to help bring young people to the point where they could make their own original contributions on the scientific frontiers of nuclear and hadronic physics CEBAF, now TJNAF (the Thomas Jefferson National Accelerator Facility), is currently a functioning laboratory, continually producing important scientific results The need to “sell” it no longer exists Furthermore, in 2001 the author published a book with Cambridge University Press entitled Electron Scattering for Nuclear and Nucleon Structure, which focuses on the foundation of this field and eliminates the need for a disproportionate emphasis on this topic Correspondingly, the chapters on CEBAF’s role a t the end of the various parts in the first edition of this book have been eliminated In Part 1, a chapter on the many-particle shell model now replaces it One of the major advances in nuclear theory in the past decade has been the placing of model hadronic field theories of the nuclear many-body system (quantum hadrodynamics, or QHD) on a firm theoretical foundation through the implementation of effective field theory for quantum chromodynamics (QCD); furthermore, relativistic mean field theory now finds justification through density functional theory, and one has a deeper understanding of the reasons for its successful phenomenology Furnstahl, Serot, and Tang are the individuals primarily responsible for this development Two new chapters on these topics are now included in Part The chapter on the model QHD-I1 has correspondingly been eliminated, as has the chapter on Weinberg’s chiral transformation, which the author believes is more vii Vlll Preface easily understood through the discussion of the transformation properties of the effective lagrangian; a new appendix on this topic is also included Another major thrust of modern nuclear physics is the search for, and characterization of, the quark-gluon plasma through relativistic heavy-ion reactions A new chapter on this topic is now included, which also contains an introduction t o transport theory Motivated primarily by the “solar neutrino problem,” a major experimental breakthrough in the past decade has been in our understanding of neutrinos, in particular, that they have mass and that there is neutrino mixing This is one of the few developments that extends the very successful standard model of the electroweak interactions A new chapter on neutrinos is included in Part A single new chapter on electron scattering completes that part To conserve length, three chapters have been eliminated: “Nuclear matter with a realistic interaction” from Part (a discussion of modern interactions based on effective field theory is included), LLMore models” from Part 3, and “Electroweak radiative corrections” from Part (although appropriate Feynman rules remain) A new appendix on units and conventions has been added Relevant sections of the text have been updated and recent references included There is now a unified bibliography Preparing a new edition has allowed the author t o eliminate the typos in the text, most of which were caused by his wayward fingers - the availability of Spellcheck is now of great assistance Errors in the formulae, which fortunately were few and far between, have hopefully also all been eliminated The expression and understanding of the strong interactions in the nuclear and hadronic domain remains one of the most interesting and challenging aspects of physics To the best of our knowledge, these are the same phenomena and rules that govern not only the behavior in the world around us, but also in the fiery interior of the objects in the most distant galaxies in deep space I am fond of telling my students that the neutron and I are the same age, as the neutron was discovered in 1932, the year that I was born It is incredible how our understanding of nuclear and hadronic phenomena has evolved within the span of one person’s lifetime It has been a privilege, and source of deep satisfaction, to have been able to participate in that understanding and development It is my belief that the material in this second edition will continue to be relevant for the foreseeable future The book is now focused on the second of the original goals, and the presentation is a more complete and balanced one It is my hope that the current edition will provide a useful text for a modern, advanced graduate course on nuclear and hadronic physics for some time to come I am fully aware that the text is a challenging one; however, I hope that dedicated students will continue t o enjoy some of the understanding obtained from it and t o share some of the pleasure I took in writing it ix Preface I would like to thank Brian Serot for his reading of the manuscript Williamsburg, Virginia March 31, 2004 John Dirk Walecka Governor’s Distinguished CEBAF Professor of Physics, Emeritus College of William and Mary Index (cj,V,) model, 119, 129, 135, 136, 201, 332, 351, 355 additional chiral scalars, 214 allowed limit, 491, 542 allowed transitions, 475 Altarelli-Parisi equations, 399, 402, 406 analytic continuation, 273, 424 analytic properties, 146, 203, 243, 423 analyzing power, 134 angular correlations, 492 angular momentum, 37, 55, 59, 60, 70, 73, 87, 181, 240, 247, 327, 370, 468, 471, 529 angular momentum operators, 51, 58, 180, 552 anomalous magnetic moment, 76, 147, 231 antibaryons, 124 anticommutation relations, 123, 233, 552 antishielding, 258 antisymmetrizing operator, 371 asymptotic freedom, 118, 163, 254, 257, 258, 271, 322, 325, 361, 362, 378 attractive square well potential, 107 axial vector coupling constant, 218 axial vector current, 185, 187, 190, 225, 242, 377, 442, 468, 472, 527, 541, 577 152, 577 ($, V,, u,r) model, 195, 208 (u, ) model, 120, 132, 152, 577 w 3-j and 6-j coefficients, 47 3-j coefficients, 74, 470 6-j coefficients, 89, 370 N - N scattering amplitude, 132, 196 N-N interaction, 201 sU(2)~ sU(2)~ @ symmetry, 215 SU(4) invariance, 91 V - A structure, 436, 465, 469, 534 V - A theory, 431 Z4 law for nuclear muon capture, 487 A(1232), 206 @decay, 433, 434, 489, 490, 496, 511, 512, 518, 539, 542 ,&decay rate, 491 0-decay transitions, 16 p-capture rate, 506, 507, 543 p-decay, 435, 540 n-N scattering, 169, 556 n-N scattering lengths, 178, 193 7r-7r scattering, 196, 201, 224, 560 n-meson, 11 u exchange, 170 a-model, 192, 193, 208, 213, 214, 378, 451, 577 c quark, 460, 461 j-shell, 49, 50 1151 supermultiplets, 100 bag models, 163, 428 Baker-Haussdorf formula, 299, 424 baryon current, 11, 121, 187, 256 baryon density, 20, 121, 123, 124, 154, 166, 207, 367, 409, 556 baryon field, 119, 123, 216 baryon Green’s function, 136, 139, 141, 142 baryon kinetic energy, 181 abstract Hilbert space, 179, 577 action, 259, 265, 267, 273, 275-277, 289, 297, 300, 302, 303, 308, 309, 317, 329, 593 594 baryon mass, 183, 184, 186, 190, 209, 380 baryon number, 13, 152, 153 baryon propagator, 138, 143 baryon self-energy, 237 baryon size, 380 baryon-meson phase, 164, 167 baryons, 118, 160, 252, 361, 362, 373 basic building blocks, 283, 288 Bates Laboratory, 538 Bethe-Goldstone equation, 26, 28, 31, 37, 109 Bethe-Goldstone wave function, 31, 34, 35 Bethe-Peierls’ cross section, 110 binomial theorem, 340 Bjorken scaling, 382, 387, 392 Bjorken scaling variable, 383 BNL, 168 Bohr atom, 485, 486 Bohr wave function, 487 Boltzmann collision term, 415 Boltzmann distribution, 418 Boltzmann equation, 417, 418 Boltzmann’s constant, 261, 577 Born approximation, 6, 68, 107, 146 boson exchange, 438-440 bosons, 197, 200, 243 boundary conditions, 277 breaking of chiral symmetry at the lagrangian level, 209 bremsstrahlung, 400 bulk properties, 30, 120, 131 bulk property of nuclear matter, 15 C-G coefficients, 56, 62, 74, 87-89, 96 C-M correction, 149, 509 C-M frame, 239, 556 C-M motion, 495, 529 Cabibbo angle, 434, 465, 472, 513 Cabibbc-Kobayashi-Moskawa (CKM) matrix, 515 canonical (anti)commutation relations, 21, 180, 186, 242, 447, 558 canonical commutation relations, 232 canonical ensemble, 261, 414 canonical partition function, 267, 271 canonical quantization, 118 canonical transformation, 37, 54, 233 canonical transformation to particles and holes, 36, 87, 551 Casimir effect, 142 Index causal limit, 127 CEBAF, 538 center-of-mass (C-M) system, 3, 28 center-of-momentum (C-M) system, 170, 561 CERN, 412, 439, 440, 516, 518 charge conjugation, 187, 441 charge conservation, 448, 452 charge density, 66, 76, 131 charge density operator, 94, 97, 98, 113 charge independence, charge operator, 570 charge oscillations, 100 charge radius of the proton, 14, 364 charge renormalization, 421 charge-changing fermion currents, 434 charged lepton (muon) capture, 484, 489 charged weak vector boson, 438 chemical potential, 152, 154, 165, 224, 238, 262 Chew-Low effective range formula, 205 Chew-Low static model, 202 chiral cr mass, 201 chiral a-model, 186 chiral invariant, 195 chiral limit, 194 chiral perturbation theory, 217, 224, 378 chiral scalar field, 195 chiral scalars, 214 chiral symmetry, 185, 188, 190, 193, 208, 215, 359 chiral symmetry breaking, 190 chiral symmetry breaking scale, 213, 214 chiral symmetry breaking term, 189 chiral symmetry on the lattice, 359 chiral transformation, 181, 183, 184, 187, 209, 242, 360, 558, 562 chiral transformation properties, 562 circular polarization vectors, 54 CKM mixing matrix, 516 classical fields, 122, 207, 220 classical lagrangian, 260 classical limit, 261 classical transport theory, 414, 417 Clebsch-Gordan (C-G) coefficients, 45, 55 collapse, 23 collective excitations, 100 collective particle-hole excitations, 91 collision term, 417 Index color, 160, 161, 252, 255, 361, 378-380, 422, 463, 464, 513 color charge, 258, 316, 321, 421, 422 color current, 256 color singlets, 370 color wave function, 370 color-singlet state vector, 380 commutation relations, 51, 59, 110, 249 completeness, 263, 384 complex scalar field, 458 condensed scalar field, 125, 153 configuration mixing, 73 confinement, 118, 163, 256, 257, 271, 321, 322, 326, 337, 338, 355, 361, 362, 378 confinement of color, 316 confining potential, 321, 322 conserved axial vector current, 184, 209 conserved baryon current, 120, 137, 242, 551 conserved current, 118, 178, 180, 185, 243, 256, 534 conserved vector current, 209, 437 conserved vector current theory (CVC), 436 constant of the motion, 180, 186 constituent quark model, 369 continuity equation, 65 continuum limit, 267, 271, 276, 277, 280, 295, 300, 303, 322, 323, 354, 357-360, 424, 425, 427 continuum mechanics, 266 contour rotation, 273 convection current, 58 convection current density, 57, 76 convex function, 565, 566 Cooper pairs, 30 correlation function, 327, 328, 425 correlation length, 109 Coulomb gauge, 53, 54, 58, 273, 421 Coulomb interaction, 3, 16, 68, 69, 108, 238 Coulomb multipole, 69, 70, 530 Coulomb potential, 231 Coulomb sum rule, 238, 544 counter terms, 139, 142 covariant derivative, 248, 249, 254, 450, 461 covariant norm, 385 creation and destruction operators, 21, 36 critical point, 156 595 critical region, 157 critical temperature, 288 critical value, 291, 315, 425 cross section, 6, 106, 134 crossing relations, 243 crucial theorem of Abers and Lee, 269 current and magnetization operators, 104 current conservation, 113, 145, 187, 540 current operator, 472 current-current interaction, 434, 440, 443 CVC, 208, 437, 441, 465, 471, 474, 476, 506-508, 539 cyclic boundary condition, 263, 266, 268, 273 cyclic properties, 228 decay of the scalar meson, 176 decay rate, 176, 177 deep-inelastic electron scattering, 160, 382, 387, 395, 398 deep-inelastic scattering, 399 deformation, 110 deformed nuclei, 75, 112 degeneracy factor, 18, 124, 164 density functional theory, 135, 207, 220, 226, 230, 510 density of final states, 176 density of nuclear matter, 19 density-dependent part, 143 detailed balance, 416 deuteron, 3, DGLAP equations, 399 dielectric medium, 258 differential cross section, 561 dimensional ana!ysis, 216 dimensions, 283 Dirac equation, 121, 122, 130, 133, 173, 231, 356-358, 364, 367, 432, 444, 473, 487 Dirac field, 161, 232, 252 Dirac hole theory, 123 Dirac lagrangian density, 351 Dirac matrices, 112, 122, 352, 432 Dirac optical potential, 129, 132, 133 Dirac particle in spherically symmetric vector and scalar fields, 234 Dirac quarks, 391 Dirac radial wave functions, 150 Dirac spinors, 69, 77, 78, 112, 123, 241, 556 596 Dirac wave function, 170, 366, 488, 509 direct interaction, 22 Dirichlet integral, 426 dispersion relations, 200, 243, 557 distribution function, 414 domain wall fermions, 360 driving term, 200, 206 dynamic resonance, 195, 199, 202, 206 Dyson's equation, 141, 142 early universe, 410 effective N-N potential with relativistic Hartree wave functions, 237 effective action, 355 effective charge, 75 effective coordination number, 286, 287, 289, 291 effective current, 145, 237 effective current operator in QHD-I, 148 effective electromagnetic current, 476, 541 effective electroweak current, 508, 509 effective field theory, 12, 142, 216, 230 effective field theory for QCD, 135, 164, 207, 224 effective hamiltonian, 319 effective interaction, 542 effective interaction in nuclei, 91 effective lagrangian, 212-217, 219, 224, 439, 440, 456, 457, 563 effective lagrangian of FST, 218, 222, 510 effective mass, 24, 29, 122, 126 effective potential in Kohn-Sham (KS) equations, 230 effective potentials, 550 effective quark-quark potential, 427 effective range, 4, 30 effective range expansion, 4, 107 effective temperature, 293, 329 effective weak curent, 477, 478 Ehrenfest 's theorem, 232 eigenstates of momentum, 262 eigenstates of position, 262 eigenvalue equation, 93, 96, 357, 366 elastic magnetic scattering, 149 electric charge, 448, 456, 461 electromagnetic current, 11, 436, 437, 441, 465, 537, 539, 571 electromagnetic current operator, 145, 383 electromagnetic field, 234, 273, 316, 317 electromagnetic field tensor, 575 Index electromagnetic field variable, 275, 353 electromagnetic interaction, 71, 243, 439, 471, 527, 570, 572 electromagnetic vertex of a free nucleon, 77, 145 electron scattering, 13, 68, 100-102, 104, 110, 118, 130, 382, 400, 403, 441, 466, 497, 498, 501, 504, 508, 526, 527 electron scattering cross section, 69, 383, 385, 391, 404, 406, 527, 530, 533 electroweak currents, 160, 463, 495 electroweak interactions of quarks, 572 electroweak quark currents, 462 EMC effect, 382, 395 energy density, 121, 124, 207, 218, 409, 410 energy functional, 220 ensemble, 339 entropy, 152, 261, 278 equation of state, 124, 127, 140, 154-156, 165, 167, 238, 239, 418, 554 equations of motion, 83, 85, 118, 153, 185, 189, 256 equilibrium condition, 154 equivalence theorem, 241 euclidian action, 318 euclidian metric, 269, 274, 277, 281, 316, 317, 319, 351, 352, 355, 423 euclidian space, 273, 327, 356 euclidicity postulate, 269 Euler angles, 59, 60, 112, 240 Euler-Heisenberg lagrangian, 216 Euler-Lagrange equations, 118, 185, 255, 421 European Muon Collaboration (EMC), 395 even-even nuclei, 16, 45, 71, 100 evolution equations, 382, 401 evolution of the structure functions, 398 exchange currents, 54, 73, 502 exchange force, exchange interaction, 22 exchange-correlation contribution, 229 excited states - equations of motion, 81 extended domain, 538, 546 external potential, 227, 228 extreme relativistic limit (ERL), 481, 482, 483, 542 Fermi and Gamow-Teller transitions, 476 Index Fermi constant, 433, 435, 437, 465 Fermi distribution function, 165, 418, 428 Fermi gas model, 18, 21, 25, 26 Fermi hamiltonian, 435 Fermi sphere, 28 Fermi wave number, 19, 21 Fermi’s Golden Rule (see also Golden Rule), 176 Fermilab, 518 fermion action, 353, 355, 427 fermion doubling, 356-359 fermion fields, 352, 355 fermion mass, 457, 459 fermions, 351, 355 Feynman boundary conditions, 269 Feynman diagrams, 90, 118, 140, 146, 198, 239, 243, 438-440, 443, 531, 541 Feynman propagator, 237, 423 Feynman rules, 118, 136, 141, 142, 146, 158, 162, 171, 172, 196, 239, 241, 256, 438, 445, 516, 531, 532, 549 Feynman rules for QCD, 162 Feynman rules for QHD-I, 136, 137 Feynman singularities, 137 field equations, 120, 121 field expansion, 232, 237 field tensor, 303, 421, 454 field theory, 267 field variables, 320 filled j-shell, 112 filled orbitals, 129, 130 final-state Coulomb interaction, 492 fine structure constant, 575 finite temperature, 152 finite temperature field theory, 158 finite, global isospin transformation, 247 first and second laws of thermodynamics, 226, 262, 553 first quantization, 58, 76, 78 first-order phase transition, 294 fission, 108 flavor, 160, 252, 255, 361, 541 flavor current, 256 flavor quantum numbers, 362 form factors, 77, 104, 105, 107, 146, 441, 471, 472, 477, 499, 500, 503, 539, 546 four-fermion model of Fermi, 215 four-momentum, 169, 232, 389, 390, 411 four-momentum transfer, 69, 382, 468 four-vectors, 169, 269, 351, 352 597 free energy, 293, 308, 310, 312, 313, 315 full quark sector, 513 full symmetry group, 463 full symmetry group of the 0-model, 212 functional, 227, 228 fundamental representation, 248, 253, 324 gamma matrix, 353 gauge boson fields, 161 gauge boson kinetic energy, 450 gauge boson mass, 450, 451, 453 gauge bosons, 450 gauge fields, 316, 355 gauge invariance, 272, 273, 275, 289, 290, 298, 299, 300, 305, 311, 312, 318, 321, 354, 424 gauge transformation, 299, 303, 318, 354 gauge-invariant measure, 279, 280, 303 Gauss’ law, 57, 421 gaussian integration, 422 Gell-Mann matrices, 253 Gell-Mann - Nishijima relation, 448 general angular dependence of the cross section, 240 generalized coordinates, 117, 213 generalized parton distributions (GPD), 394 generating functional, 118, 269, 270, 278, 316, 339, 355, 423, 427 generators of isospin transformations, 247 generators, 180, 181, 249, 253, 447, 448, 450, 558 generators of the chiral transformation, 186 ghost, 162 giant dipole resonance, 95, 99, 100 Gibbs’ criteria for phase equilibrium, 156, 166 Gibbs’ relation for thermodynamic equilibrium, 153 GIM identity, 461, 462, 513 GIM mechanism, 514 Ginsparg-Wilson fermions, 360 Glauber approximation, 544 global s U ( ) ~ s U ( ) transformation, @ ~ 212 global chiral transformation, 378 global invariance, 182, 253 global isospin invariance, 248 glueball, 316, 327 598 glueball mass, 326 gluon field tensor, 161 gluon propagator, 422 gluon self-energy, 239 gluons, 118, 160, 161, 247, 254-256, 258, 378, 389, 464 Goldberger-Treiman relation, 444, 445, 472 Golden Rule, 54, 62, 416, 478, 480, 488, 542 Goldhaber-Teller model, 100, 112 Goldstone bosons, 214, 215 grand partition function, 152, 226-228, 554 Grassmann algebra, 426, 427 Grassmann variables, 352, 355 Green’s functions, 269, 316 ground-state density, 229, 236 hadronic current, 434, 436, 456, 468, 469 hadronic generalized coordinates, 216 hadronic phase, 409 hadronic relativistic transport theory, 413 hadronic response tensor, 384, 403 hadronization, 390, 413 hadrons, 12, 80, 118, 163, 256, 363, 381, 389, 410, 464 hadrons, baryons and mesons, 117, 247 half-density radius, 14 Hamilton’s equations, 415 Hamilton’s principle, 118, 120, 261 hamiltonian, 21, 29, 39, 51, 53, 57, 67, 68, 81, 87, 112, 153, 285, 433, 438 hamiltonian density, 121, 123, 421 hamiltonian dynamics, 414 Hanford nuclear reactor, 518 hard core, hard core potential, 31, 107 Hartree-Fock energy, 39, 50 Hartree-Fock (H-F) equations, 20, 38, 39, 40, 109 Hartree-Fock ground state, 81, 82, 84 Hartree-Fock single-particle energies, 89 Hartree-Fock wave functions, 39, 102 healing distance, 34, 35 Heaviside-Lorentz (rationalized c.g.s.) units, 573 Heine’s relation, 544 Heisenberg equations of motion, 384, 444, 528, 539 Index Heisenberg representation, 136, 158, 326 helicity, 431, 432, 480, 533, 542 helicity of the photon, 59 helicity states, 239, 241 Helmholtz free energy, 226 Higgs couplings, 541 Higgs field, 454 Higgs mechanism, 452 Higgs particle, 459 Hilbert space, 261, 464 Hohenberg-Kohn equation, 228, 229 Hohenberg-Kohn free energy, 228, 244 Hohenberg-Kohn theorem, 220, 244 hole theory, 431 holes, 52, 75, 86 identical particles, 200, 225, 242 imaginary time, 265, 273, 281 impact parameter, 544 importance sampling, 344, 345, 350 incident flux, 383, 391, 416, 480, 506, 561 independent-pair approximation, 26, 35, 37, 109 independent-particle model, 25, 35 induced pseudoscalar coupling, 443, 472, 483, 484, 506, 507 infinite-momentum frame, 389, 390, 398 instability of the ground state, 99 interaction potential, 316, 319 interaction representation, 431 intermediate vector bosons, 437 internal SU(2) symmetry, 306 internal conversion, 113 internal isospin space, 297 internal space, 296, 304, 305 internal symmetry group S U ( n ) , 308 interparticle spacing, 35, 109 intrinsic magnetization density, 57, 58, 76 irreducible tensor operator (ITO), 37, 56, 57, 551 Ising model, 284-288, 292, 339, 424 isomerism, 43 isospin (see also strong isospin, weak isospin), 6, 20, 39, 87, 179, 370, 436, 437, 441, 537, 552, 556, 558, 562 isospin invariance, 247 isospin operator, 180, 247 isospin representation, 247 isospin transformation, 179, 187, 208 isotherms, 156, 167 Index isotopic spin symmetry of nuclear physics, 464 isotropic three-dimensional simple harmonic oscillator, 40 isovector current, 187 isovector magnetic moment, 101 ITO, 40, 58, 59, 61, 71, 74, 88, 94, 109, 468, 469, 552 j-shell, 45 Jacob and Wick, 60, 239, 557 Jensen’s inequality, 566 KARMEN, 525, 526 kinetic energy for vector mesons, 250 Klein-Gordon equation, 121, 362 Kohn-Sham (KS) approach, 220, 229 KS wave functions and eigenvalues, 230 lagrangian, 178, 182, 184, 196, 208, 210, 211, 248, 251, 252, 378, 437, 440, 448, 450-455, 458, 463, 514, 549, 559 lagrangian density, 117, 120, 122, 139, 146, 161, 171, 179, 187, 191, 192, 195, 232, 267, 277, 426 lagrangian for point nucleons, 571 lagrangian of QCD, 254 lagrangian of QED, 570 lagrangian of the standard model, 572 Laguerre polynomials, 42 LAMPF, 504 Landau gauge, 162, 422 large N c limit of QCD, 378, 381 lattice gauge theory (LGT), 271, 272, 283, 291, 295, 306, 316, 339 lattice sites, 274 left- and right-handed Dirac fields, 513, 559 left- and right-handed isospin, 559 left-handed neutrinos, 447, 519 Legendre polynomials, 46 Legendre transformation, 226, 228 lepton current, 433, 456, 467, 569 lepton fields, 431, 446 lepton flavor number, 524 lepton kinetic energy, 447 lepton lagrangian, 569 lepton matrix elements, 480, 481 lepton number, 433, 519, 521 lepton tensor, 384 599 lepton traces, 481, 482, 488, 533, 534 leptons, 458, 515 level orderings in the nuclear potential, 41, 44 LGT, 329, 351, 356, 359, 360, 409 Lie algebra, 181, 186, 247, 249, 253 Lie algebra s u ( ) @ s u ( ) R , 559 ~ light scalar of dynamic origin, 196 line integral, 276 linearization of the equations of motion, 82 link, 274, 275, 280, 281, 291, 299, 303, 331, 353 link variables, 290, 296, 298, 300, 308, 330, 332-335, 339 Liouville’s theorem, 414 liquid drop, 15 local SU(2)w @ U ( l ) w gauge invariance, 461 local SU(2) matrix h(z),214, 562 local current and charge density operators, 54, 471 local gauge invariance, 248, 251, 253, 271, 351, 450, 451 local gauge transformation, 248, 249, 251 localized nuclear density, 55, 79, 262, 474, 529 localized source, 57, 473 long-range correlations, 35 long-wavelength, 541 long-wavelength expansion, 491 long-wavelength limit, 63, 65, 70, 474, 475 longitudinal multipoles, 468 loops in QCD, 379 Lorentz force, 574 Lorentz transformation, 231, 239, 241, 411, 436 low-mass scalar, 195, 196, 197, 211 M.I.T bag model, 164, 361-363, 373 M$ller potential, 148, 477, 542 Mg/ller scattering, 421 magic numbers, 43 magnetic charge, 68 magnetic dipole operator, 65, 71, 496 magnetic moment, 72, 73, 368, 369, 375, 502, 503 magnetization, 286-292, 313, 329, 425 Majorana space exchange operator, 7, 8, 22 600 many degrees of freedom, 266 many-baryon Hilbert space, 152 many- body distribution function, 15 many-body forces, 35, 139 many-particle shell model, 45, 50 Markov chain, 346, 347 mass of the scalar field, 195 mass term for electron, 447 mass term for gauge bosons, 454 mass term for the light quarks, 208, 378 mass term for quarks, 161, 252 mass term for vector mesons, 250 masses and coupling constants, 177 massive neutrinos, 524 massive weak vector meson, 455 massless fermions, 448 master equations, 402, 407, 428, 568 matrix representation, 247 Maxwell construction, 127 Maxwell field tensor, 231 Maxwell’s equations, 121, 573, 576 mean field theory (MFT), 283, 285, 308, 424 mean field theory hamiltonian, 123 mean value, 289, 339, 340, 342, 343 mean-square-deviation, 341 measure, 266, 268, 305, 309, 333, 345, 425, 426 measure for path integral, 278, 281 meson exchange, 11 meson exchange potentials, 549 meson fields, 216 meson kinetic energy, 183 meson mass, 183, 188 meson potential, 183, 188, 191, 195, 209, 210, 212 meson-meson interactions, 380 mesons, 117, 118, 160, 321, 361, 393 metric, 119 metric and convention conversion tables, 573 metric conversion table, 575 Metropolis algorithm, 347-350, 426 MFT, 284, 287, 288, 290, 292, 294, 310, 313, 425 MFT ansatz, 290 microcanonical ensemble, 262, 265, 266, 414 microreversibility, 347, 349, 350 microscopic causality, 117 Index Minkowski space, 269, 316, 317, 326, 411, 423 mixed symmetry, 371 mixing angle, 515 mixing matrix, 514, 545 modal matrix, 231 model field theory, 295 model hadronic field theories, 207 modes of motion of nuclei, 99 molecular dynamics, 418 moments of the distribution functions, 428 momentum conservation, 383 momentum distribution, 395, 400 momentum fraction, 400-402, 406 momentum fraction of the gluons, 407 momentum sum rule, 390, 395 momentum transfer, 6, 65, 77, 104, 257, 258, 398, 489, 508, 529 Monte Carlo calculation, 271, 291-293, 315, 325, 339, 342-344, 346, 425, 426 Mott cross section, 69, 80, 148, 385 multidimensional integral, 344, 350 multiple scattering amplitude, 235 multiple scattering expansion, 236 multipole analysis, 53, 466, 468, 478, 527, 529 multipole expansion of the interaction, 46 multipole operators, 49, 64, 84, 94, 237, 469, 494 multipoles, 58 muon capture, 485 muon wave function, 486, 489 muonic atom, 485, 489, 542 naive dimensional analysis (NDA), 216, 221 Nambu and Jona-Lasinio model, 242 naturalness, 217, 221 negative energy sea, 124 negative energy states, 145 negative frequency poles, 138 neutral scalar field, 120 neutral vector field, 120 neutral weak vector boson, 439 neutrino cross section, 482, 484, 504-506, 509, 512, 526, 527, 540, 541 neutrino field, 447 neutrino masses, 519 neutrino mixing, 521, 523 neutrino reactions, 479, 518 Index neutrino scattering, 479 neutrinos, 518 neutron matter, 126, 127, 156, 157 neutron star, 127, 128, 167 neutron-proton cross section, Noether currents, 218, 219, 243, 244, 510 Noether’s theorem, 118, 178-180, 182, 184, 187, 208, 242, 421 non-linear couplings, 211 non-renormalizable, 213 nonabelian gauge theory, 247, 251 nonabelian lattice gauge theory, 308, 320 nonabelian theory, 303, 332 nonabelian theory S U ( n ) , 313 nonasymptotically free theory, 324, 338 noninteracting “vacuum”, 38 nonlinear couplings, 193, 195, 271, 351, 355, 361 nonlinear gluon interactions, 163, 256, 316, 327 nonrelativistic field operator, 549 nonrelativistic limit (NRL), 509, 510 nonrelativistic many-body theory, 117, 136 nonrelativistic nucleons, 58, 71, 80 nonrelativistic potential scattering, 549 nonrelativistic quarks, 361, 369 nonrelativistic treatment, 76 nonsinglet quark distribution, 407 nonsingular Serber-Yukawa potential, 102 nonsingular square well potential, 30 Nordheim-Uehling-Uhlenbeck extension, 418 normal coupling, 109 normal modes, 232 normal-coupling state, 49, 52 np cross section, nuclear charge distribution, 13, 15, 130 nuclear current densities, 77, 473 nuclear current density operator, 78, 79 nuclear current operator, 76, 471, 478 nuclear density, 14, 108, 244 nuclear domain, 164, 242, 359, 369, 374, 378, 395, 428, 463-465, 471, 537, 542, 546 nuclear energy surfaces, 17 nuclear fission, 18 nuclear force, nuclear hamiltonian, 37 nuclear Hilbert space, 55-57, 469, 528 601 nuclear magneton, 71 nuclear matrix element, 494 nuclear matter, 18, 20, 24, 35, 108, 124-126, 128, 131, 136, 139-141, 143, 157, 166, 167, 196, 207, 221, 222 nuclear reactions, 132 nuclear recoil, 70, 110, 542 nuclear saturation, 24, 25, 208 nuclear shell model, 130, 131 nucleon magnetic moments, 65 nucleon maw, 210 nucleon number, 13 nucleon pole terms, 146, 202, 203, 206 nucleon scattering, 132 nucleon-nucleon interaction, 10, 12, 25, 40, 120 nucleon-nucleus scattering, 134 number of final states, 480, 490 number of links per site, 283 number of plaquettes per site, 284 observables, 316 odd nuclei, 45, 71 odd-even nuclei, 16 odd-odd nuclei, 16, 47 one gluon exchange, 422, 427 one photon exchange, 421 one pion exchange potential (OPEP), 551 one-body density, 497, 498, 502 one-body distribution function, 415, 417 one-body operator, 81, 494 one-dimensional s.h.o., 422, 423 one-gluon-exchange interaction, 362 optical model, 25 optical potential, 132, 236, 544 optical theorem, 545 organizing principle, 217 oscillations of an incompressible liquid drop, 108 oscillator parameter, 42, 102 overlap fermions, 360 Pad6 approximates, 293 pairing energy, 16, 48 pairing force, 50 pairing of link variables, 331, 335 paramagnetic medium, 258 paramagnetic susceptibility, 424 parameter determinations of FST, 221 parameters in the effective lagrangian, 220 602 parity, 63, 187, 441, 534, 539 parity admixtures in nuclear states, 535 parity of the multipole operators, 59 parity operator, 240 parity selection rules, 70 parity violation in electron scattering, 531 parity-violating asymmetry, 535, 538, 546 partial wave analysis, 557 partially conserved axial vector current (PCAC), 181, 193, 378 partially conserved current, 178 particle content, 455 particle density, 228 particle-exchange graphs, 172, 173 particle-hole configuration energies, 83, 102, 143 particle-hole excitations, 104 particle-hole interaction, 83, 85, 89, 92, 95, 112, 143, 144 particle-hole pair, 81, 90 particle-hole states, 81, 89, 101 particle-hole supermultiplets, 91 partition function, 261, 265, 268, 270, 271, 273, 274, 278, 281, 282, 285, 286, 308, 312, 316, 329, 339, 355, 423 partition function as a path integral, 263, 266 parton, 389 parton distributions, 413 parton model, 396 path integral, 118, 260, 262, 267, 268, 271, 273, 330, 339, 422 path integral in field theory, 268 path integrals, 259, 272, 333, 355, 423, 426 Pauli matrices, 179, 436 Pauli principle, 5, 26, 27, 35, 49, 109 Pauli spinors, 78, 556 Pauli’s theorem, 233 PCAC, 195, 208, 211, 444, 445, 472, 477, 508 Peierh’ inequality, 310, 565 periodic boundary conditions (p.b.c.), 20, 53, 170, 232, 263, 277, 286, 289, 304, 316, 383, 539 perturbation theory, 21, 46, 68, 118, 163, 258, 467 perturbative QCD, 259, 271, 398 phase diagram, 166, 293, 294 phase diagram for nuclear matter, 160, 164, 168 Index phase shift, 9, 33, 107, 199, 201, 205, 241, 544 phase space, 414 phase trajectory, 414 phase transition, 167, 288, 290, 292, 293, 409 photoabsorption, 100, 103, 110 photoabsorption cross section, 404, 406, 428 photodisintegration of the deuteron, 110 photon, 11, 55, 59, 400, 402, 403, 437, 455 photon absorption, 65 photon emission, 65, 110 photon propagator, 404, 422, 527 photon wave function, 62 physical gauge fields, 569 physical nucleons, 448, 459 pion, 169, 185, 208, 209, 216, 239, 359, 409 pion decay, 219, 225, 242, 442, 445, 519, 540 pion decay rate, 442, 539 pion field, 179, 180, 248, 442, 563, 564 pion mass, 185, 187, 189, 190, 192, 211, 378 pion-nucleon scattering, 147 pion-pole, 506-508 pion-pole dominance, 443, 472 planar gluon loops, 381 plane wave, 55 plaquette, 274-276, 277, 290, 291, 297, 299, 300, 302, 303, 308, 330, 332 point Dirac couplings, 434 point Dirac current, 462 point Dirac fields, 435 point Dirac nucleon fields, 448 point nucleons, 436, 456, 458, 459, 532 point splitting, 276 Poisson Bracket, 415 polarization propagator, 90 polarized electron scattering, 535 pole contribution, 172, 196, 199 pole terms, 174, 175, 178 potential term, 186 pp cross section, pressure, 121, 124, 409, 410, 555 pressure in MFT, 553 probability density, 345, 350 probability distribution, 346-348 propagators, 269 propagators in QCD, 162 Index proton charge radius, 14 pseudospin, 50 pseudospin operators, 51 QCD lagrangian, 208 QCD sum rules, 164 QCD-inspired models, 361, 381 QHD at finite temperature, 158 QHD lagrangian density, 170 QHD-I, 142-145, 148, 152, 153, 156, 171, 221, 222, 476-478, 508, 577 quadrupole moment, 5, 67, 74, 75, 111 quantized oscillating liquid drop, 113 quantized radiation field, 53 quantum chromodynamics (QCD), 12, 118, 160-164, 167, 212, 220, 242, 247, 256, 258, 259, 271, 326, 378, 382, 398-400, 406, 407, 419, 421, 422, 428, 435, 463, 464, 471, 476, 537, 543, 546 quantum electrodynamics (QED), 11, 53, 120, 137, 163, 216, 251, 252, 257, 272-274, 281, 283, 288, 291, 295, 296, 320, 324, 338, 351, 399, 402, 403, 406, 421, 428, 437, 455, 462, 568 quantum hadrodynamics (QHD), 43, 117-119, 130, 136, 149, 163, 164, 167, 212, 413, 419, 476, 543 quantum mechanical amplitude, 259, 267, 422 quantum theory of angular momentum, 551 quark, 12, 80, 118, 160, 247, 252, 255, 256, 361, 363, 378, 389, 390, 392, 436, 437, 448, 457, 459, 460, 464, 513, 515, 572 quark current, 434, 465 quark distribution functions, 398 quark distributions, 390, 392-394 quark field, 160, 164, 252, 253, 460, 463-465, 471 quark Green’s function, 162 quark Hilbert space, 471 quark kinetic energy, 461, 513 quark mass, 161, 252, 256, 541 quark matter, 167 quark mixing, 513 quark mixing matrix, 515 quark model state vectors, 369 quark potential, 326 quark propagator, 422 quark self energy, 239 603 quark vertex, 422 quark weak isospin doublets, 460 quark-gluon matter, 166 quark-gluon phase, 164, 165, 167, 409 quark-gluon plasma, 409, 410, 413, 419 quark-gluon vertex, 239 quark-parton model, 382, 388, 390, 398, 399, 546 quasiboson description, 86 quasielastic electron scattering, 149, 150 quasielastic response, 151, 238, 543 quenched approximation, 356 radial Dirac equations, 234 radial equations, 42, 364 radial wave functions, 107 random phase approximation (RPA), 84 rapidity, 411, 412 reaction cross section, 107 real scalar field, 232 real vector field, 233 recoil factor, 488, 490, 530 reduced mass, 3, 28, 486 reduction of the basis, 87 relativistic corrections to the current, 77, 80 relativistic Hartree (Kohn-Sham) equations, 220, 223 relativistic Hartree approximation (RHA), 139, 140 relativistic Hartree equations, 208, 234, 235 relativistic Hartree matrix elements, 543 relativistic Hartree theory, 129-131, 143, 243 relativistic Hartree wave functions, 149, 508, 511 relativistic Hartree-Fock, 141 relativistic heavy-ion collider (RHIC), 167 relativistic impulse approximation (RIA), 133 relativistic mean field theory (RMFT), 122, 125, 129, 135, 153, 207, 211, 219 relativistic nuclear many-body problem, 136, 476, 508 relativistic quantum field theory, 117, 119, 136, 231, 268, 269, 272, 508 relativistic transport theory, 413, 419 renormalizable, 137, 142, 170, 188, 202, 208, 209, 212, 438, 464 604 renormalization group, 257, 258, 324, 399 renormalized charge, 257, 422 renormalized coupling constant, 172, 271, 323, 324, 361 resolution, 398-400, 406 resolving power, 402 resonance, 205 resonance dynamics, 198 response functions, 536 response tensor, 391, 392, 428 RHA, 142, 159 RMFT, 124, 126, 151, 152, 156, 159, 164, 193, 196 Rosenbluth cross section, 540 rotates physical state vector, 110 rotation matrices, 60, 62, 112, 240 rotation operator, 59, 60 rotational spectrum, 112 RPA, 85, 90, 95, 97-100, 112, 113, 143-145, 495, 496, 498 RPA equations, 96 S-matrix, 146, 169-171, 176, 224, 239, 256, 383, 391, 438, 439, 442, 443, 445, 516, 531, 539, 541, 543, 549, 560 s-wave scattering length, 558 Sachs form factors, 477, 541 saturation of nuclear forces, 18, 35, 125 scalar density, 120, 125, 154, 367 scalar exchange, 202 scalar field, 269, 423 scalar field q5 of QHD-I, 184, 211 scalar field decouples, 195 scalar mass, 190, 192 scalar self-interaction potential, 451 scalar wall, 366, 367 scaling test, 324, 325, 327 scaling variable, 387 scattering boundary condition, 107 scattering by a spherically symmetric potential, 106 scattering length, 4, 174, 175, 225 scattering wave function, 107 Schmidt lines, 73, 145 Schrodinger and Heisenberg pictures, 319 Schrodinger equation, 19, 26, 42, 82, 106, 112, 117, 230, 423, 492, 495, 522, 544 Schrodinger picture, 123, 232, 466 screening, 316 sea quarks, 393 Index second quantization, 21, 49, 78, 227, 448, 472, 494, 549 second-class currents, 441, 471, 496 selection rules, 541 self-consistency, 286, 287, 290, 313, 314 self-consistency relation, 125, 155, 157, 207, 556 self-consistent nucleon mass, 157 semiempirical mass formula, 17 semileptonic weak interactions, 466 semileptonic weak processes, 457, 479 seniority, 52 separable potentials, 235 Serber force, 23, 24, 109 shape oscillations, 100 shell model, 25, 36, 43, 49, 71, 80, 91, 104, 113, 208, 495, 508 shielding, 257 short-range correlations, 35 signals, 410 single-nucleon form factors, 148 single-nucleon matrix elements, 440, 472-474, 494, 495, 539, 541, 545 single-particle Hartree-Fock potential, 24 single-particle model, 43 single-particle potential, 26, 29, 109 single-particle shell model, 44, 45, 70, 71, 74, 75 single-particle shell model matrix elements, 111 single-particle states, 36, 101 single-particle wave functions, 20, 40 site, 291, 352, 355 Skyrme model, 381 slow nucleons, 475, 492 soft-pion limit, 194, 198 soft-pion theorems, 195, 378 solar neutrino experiments, 520 solar neutrino flux, 525 solar neutrino fluxes, 524 solar neutrino spectrum, 519 solar neutrinos, 518, 545 soliton, 361, 381 special relativity, 117, 135 spectral representation, 146, 147 spectrum for occupied levels, 133 spherical Bessel functions, 56, 63 spherical cavity with infinite walls, 40 spherical harmonics, 46 spin operator, 377 Index spin rotation function, 134 spin spherical harmonics, 234 spin-dependent forces, 103 spin-isospin wave function, 370, 371 spin-orbit interaction, 43, 91, 101, 130, 208 spin-orbit potential, 10 spinor field, 446 splitting functions, 402, 403, 406, 428 spontaneous symmetry breaking, 183, 186, 188, 209, 211, 450, 451, 458, 461, 515, 516, 541 spontaneously broken chiral symmetry, 195, 212-214, 359, 378 spurious state, 145 stability, 347, 349 stable distribution, 346 staggered fermions, 359 standard model, 440, 441, 449, 455, 456, 459, 460, 462, 464-466, 471, 476, 477, 508, 513, 516, 518, 531, 541, 542, 546 standard model currents, 569 standard model of the electroweak interactions, 446 standard solar model, 519, 521 Stanford Linear Accelerator Center (SLAC), 382, 387, 393-395, 407, 531 static electric moments, 66 static magnetic multipole operators, 68 static potentials, 80, 117 stationary phase, 261 statistical average, 330, 356 statistical error, 343 statistical operator, 158, 272, 310, 318, 329 Stokes’ theorem, 276, 302 strangeness current, 538 strangeness-changing weak neutral currents, 462 stress tensor, 121, 232 string, 321 string tension, 316, 321, 326, 336, 337 strong isodoublet, 471 strong isospin, 437, 441, 464, 465, 471, 539 strong isospin symmetry, 393, 459, 546 strong vacuum polarization, 258, 321, 393 strong-coupling limit, 329, 332, 336-338, 425 strong-coupling theory, 294 structure constants, 247, 250, 253, 254 605 structure functions, 382, 387-389, 392, 394, 397-399, 404, 546 substitution rule, 243 Sudbury Neutrino Observatory (SNO), 524, 525, 543, 545 sum over final states, 62 sum rules, 402, 568 sun, 480 supermultiplets, 103, 373 supernovae, 480, 512 surface energy, 15, 111 surface tension, 15, 108 surface thickness, 14 symmetric (T,S) = (f , f ) state, 566 symmetric top, 112 symmetrizing operator, 372, 567 symmetry energy, 16 symmetry group SU(2)w @ U ( l ) w , 449 symmetry group s U ( ) @ S U ( ~ ) R187 ~ , symmetry group SU(4), 87 symmetry group of the strong and electroweak interactions, 463 symmetry properties of the currents, 436 symmetry structure of QCD, 217 Tamm-Dancoff approximation (TDA), 82, 90, 93, 98-100, 112, 495, 496, 498 target recoil, 480 temperature Green’s function, 239 tensor force, 5, 11, 108, 169, 551 the A(1232), 201, 375 the a-model, 187 the [15] supermultiplet, 92, 94, 101 the [I] supermultiplet, 98 thermal average, 153, 272, 286, 310 thermal baryon Green’s function, 155, 158 thermal occupation numbers, 555 thermalization, 349 thermodynamic equilibrium, 155, 227 thermodynamic potential, 152-154, 226-228, 238, 239, 554-556 thermodynamics, 125 Thomas-Fermi, 149, 150, 229, 244 three families of quarks, 515 three-momentum transfer, 69, 70 three-nucleon force, 12 threshold, 481, 483, 558 threshold behavior, 174 tiling plaquettes, 329, 331, 335 time reversal, 187, 240, 441, 539, 540 606 TJNAF, 538 Tolman Oppenheimer Volkoff equations, 127 top quark, 515 torus, 278 total photon transition rate, 63 totally symmetric spin-isospin states, 372 Trace, 152, 153, 228, 261, 297 traces for electrons, 545 traditional nuclear physics framework, 471, 495, 504, 508, 543, 545 transition amplitude, 97 transition current densities, 104 transition magnetic dipole moment, 375, 376 transition matrix elements, 84, 86, 90, 94, 113 transition operator, 61 transition rate, 62, 416 transport within QCD, 413 transverse electric and magnetic multipole operators, 57, 70, 530 transverse electric multipoles, 65 transverse magnetic multipoles, 65 transverse photon exchange, 69 transverse photon field, 68 tree level, 197 two identical valence nucleons, 45 two-body density, 108, 236 two-componcnt fields, 431 two-nucleon interaction, 169 two-nucleon potential, 3, 21, 26, 35, 91, 101 two-particle potential, 46 two-state mixing, 523 unitarity, 199, 204, 240, 243 unitarize, 198, 200, 206 unitary gauge, 452-455, 458, 516, 531 units, 16, 53, 119, 234, 259, 272, 435, 523, 576 units and conventions, 573 vacuum bubble, 164, 362, 363 vacuum expectation value, 184, 189, 210, 452, 457 vacuum polarization, 257, 422 vacuum sector, 139 valence quarks, 327, 393 van der Waal’s equation of state, 127, 156 Index vapor pressure curve, 166 variational derivative, 227, 228, 422 variational differentiation, 269 variational estimate, 39 variational principle, 21, 229, 309, 310, 312 vector and axial vector currents, 178 vector current, 471 vector density operator, 56 vector fields, 249, 253 vector meson field tensor, 208, 250, 254 vector meson masses, 450 vector meson propagator, 438 vector model of angular momenta, 72 vector notation, 250 vector potential, 576 vector potential for quantized radiation field, 53 vector spherical harmonics, 55, 58, 469 velocity-dependent potential, 10 vertices in QCD, 162 virtual Compton scattering, 385 Vlasov equation, 417 Vlasov-Uehling-Uhlenbeck (VUU) model, 418 volume per site, 283 wave functions, 102 weak (left-handed) isospin, 447 weak and electromagnetic quark currents, 464 weak coupling constants, 506 weak current, 436, 437, 456 weak hamiltonian, 432, 466 weak hypercharge, 448, 458 weak isodoublet, 447, 458, 514, 545 weak isodoublet of complex scalar mesons, 450 weak isosinglet, 447 weak isospin, 449 weak isospin symmetry, 514 weak magnetism, 507, 508 weak mixing angle, 453, 504, 570, 572, 573 weak neutral charge, 537 weak neutral current, 439, 440, 465, 504, 525, 531, 532, 536-538, 545, 570, 571, 573 weak quantum numbers, 449, 460 weak rates, 497, 500-503, 510, 542 weak vector mesons, 439, 440 ... this book is available from the British Library THEORETICAL NUCLEAR AND SUBNUCLEAR PHYSICS Second Edition Copyright 2004 by Imperial College Press and World Scientific Publishing Co Pte Ltd All... Publishing Company expressed enthusiasm for printing the second edition of this book, Theoretical Nuclear and Subnuclear Physics, originally published by Oxford University Press in 1995 I am also pleased... few and far between, have hopefully also all been eliminated The expression and understanding of the strong interactions in the nuclear and hadronic domain remains one of the most interesting and