Với kỹ thuật chụp ảnh phóng xạ hai thành hai ảnh DWEDWV, 1 IQI sẽ được đặt trên ống ở phía nguồn và ngang mối hàn sao cho hình ảnh sợi thiết yếu được chồng lên trên vùng ảnh đường hàn. Với kỹ thuật chụp ảnh phóng xạ hai thành một ảnh (DWESWV) hoặc một thànhmột ảnh (SWESWV) yêu cầu phải chụp nhiều lần mới hoàn tất mối hàn, khi chiều dài phim chụp đánh giá lớn hơn 5 in. (130 mm) thì 2 IQI đặt ngang mối hàn và được đặt về phía phim sẽ được áp dụng. Một IQI sẽ được đặt cách mép chiều dài của vùng đánh giá 1 in. (25 mm) và IQI kia sẽ được đặt tại khoảng giữa chiều dài phim. Khi chiều dài phim đánh giá bằng hoặc ngắn hơn 5 in. (130 mm), một IQI sẽ được đặt ở phía phim ngang qua mối hàn và đặt ở khoảng giữa chiều dài vùng đánh giá. Khi kiểm tra mối hàn sửa, IQI bổ sung sẽ được đặt ngang qua mỗi vùng sửa chữa.
[...]...x Nuclear and Particle Physics care and grace under pressure were vital to the ultimate success of our project We thank David Rocco and Ray Teng for the artwork, and Richard Hagen for pointing out several typos and possible sources of confusion in the first edition of this book We also thank Charles Baltay and Susan Cooper for their suggested revisions of content, and Mark Strikman... quantum theory in explaining atomic phenomena was mainly due to two reasons First, the interaction responsible for holding the atom together is the long-ranged electromagnetic force, whose properties were well understood in the classical domain, and whose principles carried over quite readily to the quantum regime Second, the strength of the electromagnetic l 2 Nuclear and Particle Physics coupling is weak... the experimental information, both in nuclear and particle physics, is derived from scattering measurements - similar, in principle, to those that Ernest Rutherford and his collaborators performed in discovering the nucleus In such experiments, beams of energetic particles are directed into a fixed target, or, alternately, two beams of energetic particles are made to collide In either case, the results... Ionization Detectors 7.2.1 Ionization Counters 7.2.2 Proportional Counters 7.2.3 Geiger-Miiller Counters Scintillation Detectors Time of Flight Cherenkov Detectors Semiconductor Detectors Calorimeters Layered Detection xiii 157 159 162 165 165 169 173 174 175 177 8 Accelerators 8.1 Introductory Remarks 8.2 Electrostatic Accelerators 8.2.1 Cockcroft-Walton Machines 8.2.2 Van de Graaff Accelerator 8.3 Resonance... from the right hand side we conclude that the motion of the a -particle and the target must be essentially along the incident direction In other words, in such a case, one would expect only small deviations in the trajectory of the a -particle On the other hand, if mt » ma, then the left hand side of Eq (1.3) is negative, which implies large angles between the trajectories of the a -particle and the recoiling... Eq (1.3) gives vt < 2m7^v"., and from Eq (1.2) we again obtain that va « VQ- Therefore, mtVt < 2mava ftj 2mavo This means that the nucleus can carry away up to twice the incident momentum, which implies that the a -particle can recoil backwards with a momentum essentially equal and opposite to its initial value Such large momentum 6 Nuclear and Particle Physics transfers to the nucleus can, therefore,... provide invaluable, and often the only attainable, information about subatomic systems Since the basic principles in most of these experiments are quite similar, we will next sketch the ideas behind the pioneering work of Rutherford and his colleagues that was carried out at the University of Manchester, England, around 1910 and which provided the foundation for nuclear and particle physics Rutherford... collision, both particles move with respective velocities va and vt- Assuming that the collision is elastic (namely, that no kinetic energy is converted or lost in the process), momentum and energy conservation yield the following relations Momentum conservation: mav0 — mava + mtvt, or v0 = va H vt (1.1) 4 Nuclear and Particle Physics @ — — @ ^ m,, w, Fig 1.1 Collision of a particle of mass ma and velocity... Applications of Nuclear Physics 5.1 Introductory Remarks 5.2 Nuclear Fission 5.2.1 Basic Theory of Fission 5.2.2 Chain Reaction 5.3 Nuclear Fusion 5.4 Radioactive Decay 5.4.1 Radioactive Equilibrium 5.4.2 Natural Radioactivity and Radioactive Dating 105 105 105 106 113 116 119 124 126 6 Energy Deposition in Media 6.1 Introductory Remarks 6.2 Charged Particles 6.2.1 Units of Energy Loss and Range 6.2.2... xv Valence and Sea Quarks in Hadrons Weak Isospin and Color Symmetry Gauge Bosons Dynamics of the Gauge Particles Symmetry Breaking Chromodynamics (QCD) and Confinement Quark-Gluon Plasma 324 325 326 328 332 338 342 14 Standard Model and Confrontation with Data 14.1 Introductory Remarks 14.2 Comparisons with Data 14.3 Cabibbo Angle and the "GIM" Mechanism 14.4 CKM Matrix 14.5 Higgs Boson and sin2 6w . w1 h1" alt="" Introduction to Nuclear and Particle Physics Second Edition