1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Heat Transfer Handbook part 40 pot

10 262 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 104,95 KB

Nội dung

BOOKCOMP, Inc. — John Wiley & Sons / Page 381 / 2nd Proofs / Heat Transfer Handbook / Bejan NOMENCLATURE 381 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [381], (121) Lines: 4609 to 4609 ——— 0.91072pt PgVar ——— Normal Page PgEnds: T E X [381], (121) N number of sides in a polygon, dimensionless number of discrete sources, dimensionless number of microcontacts, dimensionless N(k  ) numerator function, dimensionless n counter, dimensionless Hertz elastic parameter, dimensionless combination parameter, dimensionless contact spot density, 1/m 2 P perimeter, m pressure, N/m 2 or Pa P g,∞ reference gas pressure, N/m 2 or Pa P m mean contact area pressure, N/m 2 or Pa Pr Prandtl number, dimensionless Q heat transfer rate, W Q g gap heat transfer rate, W q heat flux, W/m 2 R thermal resistance, K/W R g thermal resistance of gap, K/W R mac macroscopic thermal resistance of gap, K/W R mic microscopic thermal resistance of gap, K/W R r radiation resistance, K/W R ∗ c combination of terms, dimensionless R ∗ g combination of terms, dimensionless R ∗ j combination of terms, dimensionless R ∗ r combination of terms, dimensionless r radial coordinate, m S f material yield or flow stress, N/m 2 s side dimension, m T temperature, K T g gas molecule temperature, K T g,∞ reference temperature, K ∆T temperature drop or difference, K ∆T j joint temperature drop, K T area-averaged temperature, K T 1 temperature, K T 2 temperature, K t layer thickness, m thickness of elastic layer, m time, s t 1 layer 1 thickness, m thickness of isotropic plate, m t 2 layer 2 (substrate) thickness, m u local gap thickness, dimensionless position, dimensionless w(x,y) total local displacement, m BOOKCOMP, Inc. — John Wiley & Sons / Page 382 / 2nd Proofs / Heat Transfer Handbook / Bejan 382 THERMAL SPREADING AND CONTACT RESISTANCES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [382], (122) Lines: 4609 to 4696 ——— 0.77428pt PgVar ——— Normal Page PgEnds: T E X [382], (122) w o approach of contacting bodies due to loading, m X c coordinate of center of eccentric rectangular area, m x length coordinate, m Y mean plane separation, m Y c coordinate of center of eccentric rectangular area, m y distance, m length coordinate, m z length coordinate, m Greek Letter Symbols α ratio of semimajor axes, dimensionless thermal diffusivity, m 2 /s thermal conductivity ratio, dimensionless accommodation parameter or coefficient, dimensionless α 1 accommodation coefficient, dimensionless α 2 accommodation coefficient, dimensionless β combination of terms, dimensionless fluid property parameter, dimensionless β m,n eigenvalue, dimensionless Γ(x) gamma function of argument x, dimensionless γ aspect ratio parameter, dimensionless ratio of specific heats, dimensionless γ T combination of terms, dimensionless ∆ change in, dimensionless physical parameter, m 2 /N δ local gap thickness, m δ 0 local gap thickness under zero-load conditions, m δ m eigenvalue, dimensionless δ n eigenvalues of J n (x), dimensionless  radius ratio, dimensionless ellipse aspect ratio, dimensionless emissivity of hemisphere, dimensionless emissivity of disk, dimensionless relative contact spot size, dimensionless  c contact strain, dimensionless ζ ellipsoidal coordinate, m dummy variable, dimensionless θ temperature excess, K θ area averaged temperature rise, K θ(r,z) temperature excess field, K θ(τ) ellipsoidal temperature rise, K θ o centroid temperature rise, K θ s temperature rise due to spreading, K κ parameter, dimensionless BOOKCOMP, Inc. — John Wiley & Sons / Page 383 / 2nd Proofs / Heat Transfer Handbook / Bejan NOMENCLATURE 383 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [383], (123) Lines: 4696 to 4756 ——— 0.93477pt PgVar ——— Normal Page PgEnds: T E X [383], (123) thermal conductivity ratio, dimensionless Λ mean free path length of gas molecules, m Λ g molecular mean free path length at reference temperature, m Λ o reference value of mean free path length, m λ dummy variable, dimensions vary relative mean free path length, dimensionless λ 1 combination of terms, dimensionless λ 2 combination of terms, dimensionless λ n eigenvalue, dimensionless µ dynamic viscosity, N · s 2 /m positive root of an equation, dimensionless molecular weight ratio, dimensionless ν arbitrary order of Bessel function, dimensionless Poisson’s ratio, dimensionless ξ length ratio, dimensionless ρ radius of curvature, m radius of elastic hemisphere, m ρ n,e boundary condition parameter, dimensionless  rectangular aspect ratio, dimensionless combination of terms, dimensionless σ Stefan–Boltzmann constant, 5.67 ×10 −8 W/m 2 · K 4 effective surface roughness, m or microns τ thickness, dimensionless τ 1 thickness, dimensionless τ 2 thickness, dimensionless τ ∗ combination of terms, dimensionless φ angle, rad combination of terms, dimensionless φ n combination of terms, dimensionless ϕ combination of terms, dimensionless ϕ + layer parameter, dimensionless ϕ − layer parameter, dimensionless ψ combination of terms, dimensionless spreading resistance, dimensionless spreading–constriction parameter, dimensionless amplitude angle, rad ψ mac macroscopic spreading–constriction parameter, dimensionless ψ mic microscopic spreading–constriction parameter, dimensionless ψ o combination of terms, dimensionless ψ n combination of terms, dimensionless ψ e,i combination of terms, dimensionless ψ ∗ thermal elasto constriction parameter, dimensionless ψ 12 dimensional spreading resistance in layer–substrate ω angle, rad ∇ 2 Laplacian operator, 1/m 2 BOOKCOMP, Inc. — John Wiley & Sons / Page 384 / 2nd Proofs / Heat Transfer Handbook / Bejan 384 THERMAL SPREADING AND CONTACT RESISTANCES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [384], (124) Lines: 4756 to 4756 ——— 0.20874pt PgVar ——— Normal Page PgEnds: T E X [384], (124) Subscripts a nominal value ave average B Brinnell c flux tube area active area contact c, 1 contact 1 c, 2 contact 2 circle circle e elastic contact radius ei layer thickness parameter ep elastic–plastic radius ellipse ellipse g gap g, 1 gap 1 g, 2 gap 2 g, ∞ gas conductivity under continuum conditions j joint layer layer 1 layer one layer 2 layer two layers L thick layer m counter mean ma macrogap mi microcontact mac macroscopic max maximum metal metal mic microscopic n normal component counter n, e combination of terms new new value o outer p plastic contact radius polymer q layer thickness parameter r radiation or radiative s spreading thin layer source area source source sink sink BOOKCOMP, Inc. — John Wiley & Sons / Page 385 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 385 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [385], (125) Lines: 4756 to 4792 ——— 0.16562pt PgVar ——— Normal Page PgEnds: T E X [385], (125) v Vickers t tube thick thick thin thin total total 1D one-dimensional 0 order 0 1 order 1 o value at centroid of area ∞ sink temperature Superscripts i identifies ith source parameter n shape parameter q isoflux boundary condition T isothermal boundary condition ∗ composite value REFERENCES Abramowitz, M., and Stegun, I. A. (1965). Handbook of Mathematical Functions, Dover, New York. Antonetti, V. W. (1983). On the Use of Metallic Coatings to Enhance Thermal Contact Con- ductance, Ph.D. dissertation, University of Waterloo, Waterloo, Ontario, Canada. Antonetti, V. W., and Yovanovich, M. M. (1983). Using Metallic Coatings to Enhance Thermal Contact Conductance of Electronic Packages, in Heat Transfer in Electronic Equipment, 1983, ASME-HTD-28, ASME, New York, pp. 71–77. Antonetti, V. W., and Yovanovich, M. M. (1985). Enhancement of Thermal Contact Conduc- tance by Metallic Coatings: Theory and Experiments, J. Heat Transfer, 107, Aug., pp. 513– 519. Antonetti, V. W., Whittle, T. D., and Simons, R. E. (1991). An Approximate Thermal Contact Conductance Correlation, in Experimental/Numerical Heat Transfer in Combustion and Phase Change, ASME-HTD-170, ASME, New York. Beck, J. V. (1979). Average Transient Temperature within a Body Heated by a Disk Heat Source, in Heat Transfer, Thermal Control, and Heat Pipes, Progress in Aeronautics and Astronautics, Vol. 70, AIAA, New York, pp. 3–24. Blackwell, J. H. (1972). Transient Heat Flow from a Thin Circular Disk Small-Time Solution, J. Aust. Math. Soc., 14, 433–442. Braun, D., and Frohn, A. (1976). Heat Transfer in Simple Monatomic Gases and in Binary Mixtures of Monatomic Gases, Int. J. Heat and Mass Transfer, 19, 1329–1335. Burde, S. S. (1977). Thermal Contact Resistance between Smooth Spheres and Rough Flats, Ph.D. Dissertation, Department of Mechanical Engineering, University at Waterloo, Water- loo, Ontario, Canada. BOOKCOMP, Inc. — John Wiley & Sons / Page 386 / 2nd Proofs / Heat Transfer Handbook / Bejan 386 THERMAL SPREADING AND CONTACT RESISTANCES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [386], (126) Lines: 4792 to 4831 ——— 8.0pt PgVar ——— Normal Page PgEnds: T E X [386], (126) Burde, S. S., and Yovanovich, M. M. (1978). Thermal Resistance at Smooth Sphere/Rough Flat Contacts: Theoretical Analysis, AIAA, 78–871, 2nd AIAA/ASME Thermophysics and Heat Transfer Conference, Palo Alto, CA. Bush, A. W., and Gibson, R. D. (1979). A Theoretical Investigation of Thermal Contact Conductance, J. Appl. Energy, 5, 11–22. Bush, A. W., Gibson, R. D., and Thomas, T. R. (1975). The Elastic Contact of a Rough Surface, Wear, 35, 87–111. Byrd, P. F., and Friedman, M. D. (1971). Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed., Springer-Verlag, New York. Carslaw, H. S., and Jaeger, J. C. (1959). Conduction of Heat in Solids, 2nd ed., Oxford Uni- versity Press, London. Cetinkale, T. N., and Fishenden, M. (1951). Thermal Conductance of Metal Surfaces in Con- tact, Proc. General Discussion on Heat Transfer, Institute of Mechanical Engineers, London, pp. 271–275. Chen, W. T., and Engel, P. A. (1972). Impact and Contact Stress Analysis in Multilayer Media, Int. J. Solids Struct., 8, 1257–1281. Chow, Y. L., and Yovanovich, M. M. (1982). The Shape Factor of the Capacitance of a Con- ductor, J. Appl. Physics, 53(12), 8470–8475. Churchill, S. W., and Usagi, R. (1972). A General Expression for the Correlation of Rates of Transfer and Other Phenomena, AIChE J., 18, 1121–1132. Clausing, A. M., and Chao, B. T. (1965). Thermal Contact Resistance in a Vacuum Environ- ment,” J. Heat Transfer, 87, 243–251. Cooper, M. G., Mikic, B. B., and Yovanovich, M. M. (1969). Thermal Contact Conductance, Int. J. Heat Mass Transfer, 12, 279–300. DeVaal, J. W. (1988). Thermal Joint Conductance of Surfaces Prepared by Grinding, Ph.D. dissertation, Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada. DeVaal, J. W., Yovanovich, M. M., and Negus, K. J. (1987). The Effects of Surface Slope Anisotropy on the Contact Conductance of Conforming Rough Surfaces, in Fundamentals of Conduction and Recent Developments in Contact Resistance, HTD-69, ASME, New York, pp. 123–134. Dryden, J. R. (1983). The Effect of a Surface Coating on the Constriction Resistance of a Spot on an Infinite Half-Plane, J. Heat Transfer, 105, May, 408–410. Dryden, J. R., Yovanovich, M. M., and Deakin, A. S. (1985). The Effect of Coatings on the Steady-State and Short Time Constriction Resistance for an Arbitrary Axisymmetric Flux, J. Heat Transfer, 107, Feb., 33–38. Fisher, N. J. (1985). Analytical and Experimental Studies of the Thermal Contact Resistance of Sphere Layered Contact, M.A.Sc. thesis, Department of Mechanical Engineering, Uni- versity of Waterloo, Waterloo, Ontario, Canada. Fisher, N. J., and Yovanovich, M. M. (1989). Thermal Constriction Resistance of Sphere/ Layered Flat Contacts: Theory and Experiments, J. Heat Transfer, 111, May, pp. 249–256. Fletcher, L. S. (1972). A Review of Thermal Control Materials for Metallic Junctions, J. Spacecr. Rockets, 9(12), 849–850. Fletcher, L. S. (1988). Recent Developments in Contact Conductance Heat Transfer, J. Heat Transfer, 110, 1059–1070. BOOKCOMP, Inc. — John Wiley & Sons / Page 387 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 387 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [387], (127) Lines: 4831 to 4874 ——— 13.0pt PgVar ——— Normal Page PgEnds: T E X [387], (127) Fletcher, L. S. (1990). A Review of Thermal Enhancement Techniques for Electronic Systems, IEEE Trans. Components Hybrids Manuf. Technol., 13(4), 1012–1021. Fuller, J. J. (2000). Thermal Contact Conductance of Metal/Polymer Joints: An Analytical and Experimental Investigation, M.S. thesis, Department of Mechanical Engineering, Clemson University, Clemson, SC. Fuller, J. J., and Marotta, E. E. (2000). Thermal Contact Conductance of Metal/Polymer Joints, J. Thermophys. Heat Transfer, 14(2), 283–286. Garnier, J. E., and Begej, S. (1979). Ex-reactor determination of Gap and Contact Conductance between Uranium Dioxide:Zircaloy-4 Interfaces, Report,Nuclear Regulatory Commission, Washington, DC. Gibson, R. D. (1976). The Contact Resistance for a Semi-infinite Cylinder in a Vacuum, J. Appl. Energy, 2, 57–65. Gradshteyn, I. S., and Ryzhik, I. M. (1965). Table of Integrals, Series and Products, Springer- Verlag, New York. Greene, P. R. (1989). A Useful Approximation to the Error Function: Applications to Mass, Momentum, and Energy Transport in Shear Layers, J. Fluids Eng., 111, June, 224–226. Greenwood, J. A. (1967). The Area of Contact between Rough Surfaces and Flats, J. Lubr. Technol., 81, 81–91. Greenwood, J. A., and Tripp, J. H. (1967). The Elastic Contact of Rough Spheres, J. Appl. Mech., 89(1), 153–159. Greenwood, J. A., andTripp, J. H. (1970). The Contact of Two Nominally Flat Rough Surfaces, Proc. Inst. Mech. Eng., 185, 625–633. Greenwood, J. A., and Williamson, J. B. P. (1966). Contact of Nominally Flat Surfaces, Proc. R. Soc. London, A295, 300–319. Hartnett, J. P. (1961). A Survey of Thermal Accommodation Coefficients, in Rarefied Gas Dynamics, L. Talbot, ed., Academic Press, New York, pp. 1–28. Hegazy, A. A. (1985). Thermal Joint Conductance of Conforming Rough Surfaces: Effect of Surface Microhardness Variation, Ph.D. dissertation, University of Waterloo, Waterloo, Ontario, Canada. Hertz, H. R. (1896). Miscellaneous Papers, English Translation, Macmillan, London. Holm, R. (1967). Electric Contacts: Theory and Applications, Springer-Verlag, New York. Hui, P., and Tan, H. S. (1994). Temperature Distributions in a Heat Dissipation System Using a Cylindrical Diamond Heat Spreader on a Copper Sink, J. Appl. Phys., 75(2), 748–757. Jeans, J. (1963). The Mathematical Theory of Electricity and Magnetism, Cambridge Univer- sity Press, Cambridge, pp. 244–249. Johnson, K. L. (1985). Contact Mechanics, Cambridge University Press, Cambridge. Keltner, N. R. (1973). Transient Heat Flow in Half-Space Due to an Isothermal Disk on the Surface, J. Heat Transfer, 95, 412–414. Kennedy, D. P. (1960). Spreading Resistance in Cylindrical Semiconductor Devices, J. Appl. Phys., 31(8), 1490–1497. Kitscha, W. W. (1982). Thermal Resistance of Sphere–Flat Contacts, M.A.Sc. thesis, Depart- ment of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada. Kitscha, W. W., and Yovanovich, M. M. (1975). Experimental Investigation on the Overall Thermal Resistance of Sphere–Flat Contacts, Progress in Astronautics and Aeronautics: BOOKCOMP, Inc. — John Wiley & Sons / Page 388 / 2nd Proofs / Heat Transfer Handbook / Bejan 388 THERMAL SPREADING AND CONTACT RESISTANCES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [388], (128) Lines: 4874 to 4914 ——— 6.0pt PgVar ——— Normal Page PgEnds: T E X [388], (128) Heat Transfer with Thermal Control Applications, Vol. 39, MIT Press, Cambridge, MA, pp. 93–110. Kraus, A. D., and Bar-Cohen, A. (1983). Thermal Analysis and Control of Electronic Equip- ment, McGraw-Hill, New York, pp. 199–214. Lambert, M. A. (1995). Thermal Contact Conductance of Spherical Rough Surfaces, Ph.D. dissertation, Texas A&M University, College Station, TX. Lambert, M. A., and Fletcher, L. S. (1996). A Review of Models for Thermal Contact Con- ductance of Metals, AIAA 96-0239, 34th Aerospace Sciences Meeting and Exhibit, Jan. 15–18. Lambert, M. A., and Fletcher, L. S. (1997). Thermal Contact Conductance of Spherical Rough Surfaces, J. Heat Transfer, 119, 684–690. Lee, S., Yovanovich, M. M., Song, S., and Moran, K. P. (1993). Analysis of Thermal Constric- tion Resistance in Bolted Joint, Int. J. Microcircuits Electron. Packag., 16(2), 125–136. Lee, S., Song, S., Au, V., and Moran, K. P. (1995). Constriction/Spreading Resistance Model for Electronics Packaging, Proc. ASME/JSME Thermal Engineering Conference, Vol. 4, pp. 199–206. Lloyd, W. R., Wilkins, D. R., and Hill, P. R. (1973). Heat Transfer in Multicomponent Mon- atomic Gases in the Low, Intermediate and High Pressure Regime, Proc. Nuclear Thermon- ics Conference. Loyalka, S. K. (1982). A Model for Gap Conductance in Nuclear Fuel Rods, Nucl. Technol., 57, 220–227. Madhusudana, C. V. (1975). The Effect of Interface Fluid on Thermal Contact Conductance, Int. J. Heat Mass Transfer, 18, 989–991. Madhusudana, C. V. (1996). Thermal Contact Conductance, Springer-Verlag, New York. Madhusudana, C. V., and Fletcher, L. S. (1986). Contact Heat Transfer: The Last Decade, AIAA J., 24(3), 510–523. Madhusudana, C. V., Peterson, G. P., and Fletcher, L. S. (1988). Effect of Non-uniform Pres- sures on the Thermal Conductance in Bolted and Riveted Joints, Mech. Eng., 104, 57– 67. Magnus, W., Oberhettinger, F., and Soni, R. P. (1966). Formulas and Theorems for Special Functions of Mathematical Physics, Springer-Verlag, New York. Mantelli, M. B. H., and Yovanovich, M. M. (1996). Experimental Determination of the Overall Thermal Resistance of Satellite Bolted Joints, J. Thermophys. Heat Transfer, 10(1), 177– 179. Mantelli, M. B. H., and Yovanovich, M. M. (1998a). Parametric Heat Transfer Study of Bolted Joints, J. Thermophys. Heat Transfer, 12(3), 382–390. Mantelli, M. B. H., and Yovanovich, M. M. (1998b). Compact Analytical Model for Overall Thermal Resistance of Bolted Joints, Int. J. Heat Mass Transfer, 41(10), 1255–1266. Marotta, E. E., and Fletcher, L. S. (1996). Thermal Contact Resistance of Selected Polymeric Materials, J. Thermophys. Heat Transfer, 10(2), 334–342. Marotta, E. E., and Fletcher, L. S. (2001). Thermal Contact Resistance Modeling of Non-flat, Roughened Surfaces with Non-metallic Coatings, J. Heat Transfer, 123, 11–23. Martin, K. A., Yovanovich, M. M., and Chow, Y. L. (1984). Method of Moments Formula- tion of Thermal Constriction Resistance of Arbitrary Contacts, AIAA-84-1745, AIAA 19th Thermophysics Conference, Snowmass, CO, June 25–28. BOOKCOMP, Inc. — John Wiley & Sons / Page 389 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 389 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [389], (129) Lines: 4914 to 4948 ——— 12.0pt PgVar ——— Normal Page PgEnds: T E X [389], (129) McGee, G. R., Schankula, M. H., and Yovanovich, M. M. (1985). Thermal Resistance of Cylinder-Flat Contacts: Theoretical Analysis and Experimental Verification of a Line- Contact Model, Nucl. Eng. Des., 86, 369–381. McWaid, T. H., and Marschall, E. (1992a). Applications of the Modified Greenwood and Williamson Contact Model for Prediction of Thermal Contact Resistance, Wear, 152, 263– 277. McWaid, T. H., and Marschall, E. (1992b). Thermal Contact Resistance across Pressed Metal Contacts in a Vacuum Environment, Int. J. Heat Mass Transfer, 35, 2911–2920. Mikic, B. B. (1970). Thermal Constriction Resistance Due to Nonuniform Surface Conditions: Contact Resistance at Nonuniform Interface Pressure, Int. J. Heat Mass Transfer, 13, 1497– 1500. Mikic, B. B. (1974). Thermal Contact Conductance: Theoretical Considerations, Int. J. Heat Mass Transfer, 17, 205–214. Mikic, B. B., and Rohsenow, W. M. (1966). Thermal Contact Resistance, Mech. Eng. Rep. DSR 74542-41, MIT, Cambridge, MA. Muzychka, Y. S., Sridhar, M. R., Yovanovich, M. M., and Antonetti, V. W. (1999). Thermal Spreading Resistance in Multilayered Contacts: Applications in Thermal Contact Resis- tance, J. Thermophys. Heat Transfer, 13(4), 489–494. Muzychka, Y. S., Culham, J. R., and Yovanovich, M. M. (2000). Thermal SpreadingResistance of Eccentric Heat Sources on Rectangular Flux Channels, ASME-HTD-366-4, ASME, New York, pp. 347–355. Negus, K. J., and Yovanovich, M. M. (1984a). Constriction Resistance of Circular Flux Tubes with Mixed Boundary Conditions by Linear Superposition of Neumann Solutions, ASME- 84-HT-84, ASME, New York. Negus, K. J., and Yovanovich, M. M. (1984b). Application of the Method of Optimized Images to Steady Three-Dimensional Conduction Problems, ASME-84-WA/HT-110, ASME, New York. Negus, K. J., and Yovanovich, M. M. (1988). Correlation of Gap Conductance Integral for Conforming Rough Surfaces, J. Thermophys. Heat Transfer, 12, 279–281. Negus, K. J., and Yovanovich, M. M. (1989). Transient Temperature Rise at Surfaces Due to Arbitrary Contacts on Half-Spaces, CSME Trans., 13(1/2), 1–9. Negus, K. J., Yovanovich, M. M., and Thompson, J. C. (1985). Thermal Constriction Resis- tance of Circular Contacts on Coated Surfaces: Effect of Contact Boundary Condition, AIAA-85-1014, AIAA 20th Thermophysics Conference, Williamsburg, VA, June 19–21. Negus, K. J., Yovanovich, M. M., and Beck, J. V. (1989). On the Nondimensionalization of Constriction Resistance for Semi-infinite Heat Flux Tubes, J. Heat Transfer, 111, Aug., 804–807. Nelson, G. J., and Sayers, W. A. (1992). A Comparison of Two-Dimensional Planar, Axi- symmetric and Three-Dimensional Spreading Resistance, Proc. 8th Annual IEEE Semi- conductor Thermal Measurement and Management Symposium, 62–68. Nho, K. M. (1989). Experimental Investigation of Heat Flow Rate and Directional Effect on Contact Resistance of Anisotropic Gound/Lapped Interfaces, Ph.D. dissertation Depart- ment of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada. Normington, E. J., and Blackwell, J. H. (1964). Transient Heat Flow from Constant Tempera- ture Spheroids and the Thin Circular Disk, Q. J. Mech. Appl. Math., 17, 65–72. BOOKCOMP, Inc. — John Wiley & Sons / Page 390 / 2nd Proofs / Heat Transfer Handbook / Bejan 390 THERMAL SPREADING AND CONTACT RESISTANCES 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [390], (130) Lines: 4948 to 4994 ——— 0.0pt PgVar ——— Custom Page (7.0pt) PgEnds: T E X [390], (130) Normington, E. J., and Blackwell, J. H. (1972). Transient Heat Flow from a Thin Circular Disk: Small Time Solution, J. Aust. Math. Soc., 14, 433–442. Onions, R. A., and Archard, J. F. (1973). The Contact of Surfaces Having a Random Structure, J. Phys. D. Appl. Phys., 6, 289–304. Prasher, R. S. (2001). Surface Chemistry and Characteristics Based Model for the Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials, J. Heat Transfer, 123, 969–975. Rapier, A. C., Jones, T. M., and McIntosh, J. E. (1963). The Thermal Conductance of Uranium Dioxide/Stainless Steel Interfaces, Int. J. Heat Mass Transfer, 6, 397–416. Roess, L. C. (1950). Theory of Spreading Conductance, Beacon Laboratories of Texas Com- pany, Beacon, NY, App. A (unpublished report). Savija, I., Culham, J. R., Yovanovich, M. M., and Marotta, E. E. (2002a). Review of Thermal Conductance Models for Joints Incorporating Enhancement Materials, AIAA-2002-0494, 40th AIAA Aerospace Sciences Meeting and Exhibit, Jan. 14–17, Reno, NV. Savija, I., Yovanovich, M. M., Culham, J. R., and Marotta, E. E. (2002b). Thermal Joint Resistance Models for Conforming Rough Surfaces with Grease Filled Gaps, AIAA-2002- 0495, 40th AIAA Aerospace Sciences Meeting and Exhibit, Jan. 14–17, Reno, NV. Sayles, R. S., and Thomas, T. R. (1976). Thermal Conductance of a Rough Elastic Contact, J. Appl. Energy, 2, 249–267. Schneider, G. E. (1978). Thermal Resistance Due to Arbitrary Dirichlet Contacts on a Half- Space, Prog. Astronaut. Aeronaut. Thermophys. Therm. Control, 65, 103–119. Schneider, G. E., Strong, A. B., and Yovanovich, M. M. (1976). Transient Heat Flow from a Thin Circular Disk, AIAA Progress in Astronautics, Radiative Transfer and Thermal Control, (Ed. A. M. Smith), MIT Press, 49, 419–432. Semyonov, Yu. G., Borisov, S. E., and Suetin, P. E. (1984). Investigation of Heat Transfer in Rarefied Gases over a Wide Range of Knudsen Numbers, Int. J. Heat Mass Transfer, 27, 1789–1799. Sexl, R. U., and Burkhard, D. G. (1969). An Exact Solution for Thermal Conduction through a Two-Dimensional Eccentric Constriction, Prog. Astronaut. Aeronaut., 21, 617–620. Shlykov, Yu. P. (1965). Calculation of Thermal Contact Resistance of Machined Metal Sur- faces, Teploenergetika, 12(10), 79–83. Smythe, W. R. (1951). The Capacitance of a Circular Annulus, Am. J. Phys., 22(8), 1499–1501. Smythe, W. R. (1968). Static and Dynamic Electricity, 3rd ed., McGraw-Hll, New York. Sneddon, I. N. (1966). Mixed Boundary Value Problems in Potential Theory, North-Holland, Amsterdam. Song, S. (1988). Analytical and Experimental Study of Heat Transfer through Gas Layers of Contact Interfaces, Ph.D. dissertation, University of Waterloo, Waterloo, Ontario, Canada. Song, S., and Yovanovich, M. M. (1987). Correlation of Thermal Accommodation Coefficients for Engineering Surfaces, ASME-HTD-69, ASME, New York, 107–116. Song, S., and Yovanovich, M. M. (1988). Relative Contact Pressure: Dependence on Surface Roughness and Vickers Microhardness, J. Thermophys. Heat Transfer, 2(1), 43–47. Song, S., Yovanovich, M. M., and Nho, K. (1992a). Thermal Gap Conductance: Effects of Gas Pressure and Mechanical Load, J. Thermophys. Heat Transfer, 6(1), 62–68. Song, S., Park, C., Moran, K. P., and Lee, S. (1992b). Contact Area of Bolted Joint Interface: Analytical, Finite Element Modeling, and Experimental Study, Comput. Aid. Des. Electron. Packag., 3, 73–81. . Developments in Contact Conductance Heat Transfer, J. Heat Transfer, 110, 1059–1070. BOOKCOMP, Inc. — John Wiley & Sons / Page 387 / 2nd Proofs / Heat Transfer Handbook / Bejan REFERENCES 387 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 [387],. Joints, J. Thermophys. Heat Transfer, 10(1), 177– 179. Mantelli, M. B. H., and Yovanovich, M. M. (1998a). Parametric Heat Transfer Study of Bolted Joints, J. Thermophys. Heat Transfer, 12(3), 382–390. Mantelli,. York. Beck, J. V. (1979). Average Transient Temperature within a Body Heated by a Disk Heat Source, in Heat Transfer, Thermal Control, and Heat Pipes, Progress in Aeronautics and Astronautics, Vol. 70,

Ngày đăng: 05/07/2014, 16:20

TỪ KHÓA LIÊN QUAN