1. Trang chủ
  2. » Giáo án - Bài giảng

20 Đề thi TS 10 của 20 Tình thành -có HD giải(09-10)

61 440 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 61
Dung lượng 3,77 MB

Nội dung

Đề thiTuyển sinh 10 của 20 tỉnh thành 2009-2010 ( có đáp án ) St/11C Së GD - §T K× thi tun sinh líp 10 n¨m häc 2009-2010 Kh¸nh hoµ m«n: to¸n Ngµy thi : 19/6/2009 Thêi gian lµm bµi: 120 phót (kh«ng kĨ thêi gian giao ®Ị) Bµi 1: (2,0®) (Kh«ng dïng m¸y tÝnh cÇm tay) a. Cho biÕt A = 5 + 15 vµ B = 5 - 15 h·y so s¸nh tỉng A + B vµ tÝch A.B. b. Gi¶i hƯ ph¬ng tr×nh 2 1 3 2 12 x y x y + =   − =  Bài 2: (2,50 điểm) Cho Parabol (P) : y = x 2 và đường thẳng (d): y = mx – 2 (m là tham số, m ≠ 0 ) a. Vẽ đồ thò (P) trên mặt phẳng Oxy. b. Khi m = 3, tìm tọa độ giao điểm của (p) và (d). c. Gọi A(x A ; y A ), B(x B ; y B ) là hai giao điểm phân biệt của (P) và (d). tìm các giá trò của m sao cho y A + y B = 2(x A + x B ) – 1 Bài 3: (1,50 điểm) Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 6(m) và bình phương độ dài đường chéo gấp 5 lần chu vi. Xác đònh chiều dài và chiều rộng mảnh đất đó. Bài 4: (4,00 điểm) Cho đường tròn (O; R). Từ một điểm M nằm ngoài (O; R) vẽ hai tiếp tuyến MA và MB (A, B là hai tiếp điểm). Lấy điểm C bất kì trên cung nhỏ AB (Ckhác với A và B). Gọi D, E, F lần lượt là hình chiếu vuông góc của C trên AB, AM, BM. a. Chứng minh AECD là một tứ giác nội tiếp. b. Chứng minh: · · CDE CBA= c. Gọi I là giao điểm của AC và ED, K là giao điểm của CB và DF. Chứng minh IK//AB. d. Xác đònh vò trí điểm C trên cung nhỏ AB để (AC 2 + CB 2 ) nhỏ nhất. Tính giá trò nhỏ nhất đó khi OM = 2R. Hết HƯỚNG DẪN GIẢI Bài 1: (2,00 điểm) (Không dùng máy tính cầm tay) a. Cho biết 5 15 và B = 5 15 hãy so sánh tổng A+B và tích A.BA = + − 1 1 Đề thiTuyển sinh 10 của 20 tỉnh thành 2009-2010 ( có đáp án ) St/11C ( ) ( ) ( ) ( ) ( ) 2 2 Ta có : A+B= 5 15 5 15 10 A.B = 5 15 . 5 15 5 15 25 15 10 A+B = A.BVậy + + − = + − = − = − = b. Giải hệ phương trình: 2 1 3 2 12 x y x y + =   − =  ( ) 1 2 2 1 1 2 3 2 1 2 12 3 2 12 3 2 4 12 1 2 1 2 1 4 3 7 2 12 7 14 2 2 y x x y y x x x x y x x y x y x y y x x x x = −  + = = −    ⇔ ⇔    − − = − = − + =     = − = − = − = −     ⇔ ⇔ ⇔ ⇔     − = = = =     Bài 2: (2,50 điểm) Cho Parabol (P) : y = x 2 và đường thẳng (d): y = mx – 2 (m là tham số, m ≠ 0 ) a. Vẽ đồ thò (P) trên mặt phẳng Oxy. TXĐ: R BGT: x -2 -1 0 1 2 y = x 2 4 1 0 1 4 Điểm đặc biệt: Vì : a = 1 > 0 nên đồ thò có bề lõm quay lên trên. Nhận trục Oy làm trục đối xứng. Điểm thấp nhất O(0;0) ĐỒ THỊ: b. Khi m = 3, tìm tọa độ giao điểm của (p) và (d). Khi m = 3 thì (d) : y = 3x – 2 Phương trình tìm hoành độ giao điểm: x 2 = 3x – 2 x 2 - 3x + 2 = 0 (a+b+c=0) =>x 1 = 1 ; y 1 = 1 và x 2 = 2; y 2 = 4 Vậy khi m = 3 thì d cắt P tại hai điểm (1; 1) và (2; 4). c. Gọi A(x A ; y A ), B(x B ; y B ) là hai giao điểm phân biệt của (P) và (d). tìm các giá trò của m sao cho y A + y B = 2(x A + x B ) – 1(*) Vì A(x A ; y A ), B(x B ; y B ) là giao điểm của (d) và (P) nên: ( ) A A B B A B A B y = mx 2 y = mx 2 y y =m x x 4 − − + + − 2 2 1-1-2 2 4 1 y=x 2 0 x y Đề thiTuyển sinh 10 của 20 tỉnh thành 2009-2010 ( có đáp án ) St/11C ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) A B A B A B A B A B A B A B A B Thay vào (*) ta có: m x x 4 2 x x 1 m x x 2 x x 3 2 x x 3 m x x x x 3 m 2 x x + − = + − ⇔ + = + + + ⇔ = + + + ⇔ = + + Bài 3: (1,50 điểm) ( ) [ ] x(m) là chiều dài mảnh đất hình chữ nhật. => x-6 (m) là chiều rộng mảnh đất hình chữ nhật(ĐK: x-6>0 => x> 6) chu vi mảnh đất là 2. x+ x-6 = 2. 2x-6 4 12 ; bình Gọi x Theo đònh lí Pitago   = −   ( ) ( ) 2 2 2 2 2 2 2 phương độ dài đường chéo sẽ là: x x-6 x x 36 12 2x 12 36 :2x 12 36 5. 4 12 2x 12 36 20 60 x x Ta có phương trình x x x x + = + + − = − + − + = − ⇔ − + = − ( ) 2 2 1 2 2x 32 96 0 x 16 48 0 ' 64 48 16 ' 16 4 0 8 4 8 4 nghiệm: x 12 và x 4 6 1 1 chiều dài mảnh đất là 12(m) và chiều rộng mảnh đất là 6(m) x x Phương trình co ùhai loại Vậy ⇔ − + = ⇔ − + = ∆ = − = ⇒ ∆ = = 〉 + − = = = = 〈 Bài 4: (4,00 điểm) GT đt:(O; R),tt:MA,MB;C » AB∈ ; ;CD AB CE AM CF BM⊥ ⊥ ⊥ KL a. Chứng minh AECD là một tứ giác nội tiếp. b. Chứng minh: · · CDE CBA= c. IK//AB BÀI LÀM: a. Chứng minh AECD là một tứ giác nội tiếp. Xét tứ giác AECD ta có : - Hai góc đối · · 90 ( ; )AEC ADC CD AB CE AM= = ⊥ ⊥ d Nên tổng của chúng bù nhau. Do đó tứ giác AECD nội tiếp đường tròn b. Chứng minh: · · CDE CBA= Tứ giác AECD nội tiếp đường tròn nên · · ( )CDE CAE cùngchắncungCE= Điểm C thuộc cung nhỏ AB nên: 3 3 Đề thiTuyển sinh 10 của 20 tỉnh thành 2009-2010 ( có đáp án ) St/11C · · ( )CAE CBA cùngchắncungCA= Suy ra : · · CDE CBA= c. Chứng minh IK//AB µ µ µ µ · · · · µ ¶ ¶ ¶ · · · · · 1 1 2 2 0 0 Xét DCE và BCA ta có: D ( ) DCE KCI E ( ) EAD IDK( ; ) EAD DCE 180 ( nội tiếp) KCI IDK 180 B cmt A cùngchắncungCD mà A D A D FBC tứ giác AECD  =  ⇒ =  =   = = = = + = ⇒ + = V V Suy ra tứ giác ICKD nội tiếp. => · · » ( ) CKCIK CDK cùngchắn= Mà · · · ( ) CBFCAB CDK cùngchắn= Suy ra · · ( ) vò trí đồng vòCIK CBA ở=  IK//AB (đpcm) d. Xác đònh vò trí điểm C trên cung nhỏ AB để (AC 2 + CB 2 ) nhỏ nhất. Tính giá trò nhỏ nhất đó khi OM = 2R. Gọi N là trung điểm của AB. Ta có: AC 2 + CB 2 = 2CD 2 + AD 2 + DB 2 =2(CN 2 – ND 2 ) + (AN+ND) 2 + (AN – ND) 2 = 2CN 2 – 2ND 2 + AN 2 + 2AN.ND + ND 2 + AN 2 – 2AN.ND + ND 2 . = 2CN 2 + 2AN 2 = 2CN 2 + AB 2 /2 AB 2 /2 ko đổi nên CA 2 + CB 2 đạt GTNN khi CN đạt GTNN  C là giao điểm của ON và cung nhỏ AB. => C là điểm chính giữa của cung nhỏ AB. Khi OM = 2R thì OC = R hay C là trung điểm của OM => CB = CA = MO/2 = R Do đó: Min (CA 2 + CB 2 ) = 2R 2 . 4 4 A B M C D E F I K A 2 D 1 D 2 A 1 N thiTuyn sinh 10 ca 20 tnh thnh 2009-2010 ( cú ỏp ỏn ) St/11C Sở Giáo dục và đào tạo Hà Nội Kỳ thi tuyển sinh vào lớp 10 THPT Năm học: 2009 - 2010 Môn thi: ToánNgày thi: 24 tháng 6 năm 2009 Thời gian làm bài: 120 phút Bài I (2,5 điểm) Cho biểu thức 1 1 4 2 2 x A x x x = + + - - + , với x0; x4 1) Rút gọn biểu thức A. 2) Tính giá trị của biểu thức A khi x=25. 3) Tìm giá trị của x để 1 3 A =- . Bài II (2,5 điểm) Giải bài toán bằng cách lập phơng trình hoặc hệ phơng trình: Hai tổ sản suất cùng may một loại áo. Nếu tổ thứ nhất may trong 3 ngày, tổ thứ hai may trong 5 ngày thì cả hai tổ may đợc 1310 chiếc áo. Biết rằng trong mỗi ngày tổ thứ nhất may đợc nhiều hơn tổ thứ hai 10 chiếc áo. Hỏi mỗi tổ may trong một ngày đợc bao nhiêu chiếc áo? Bài III (1,0 điểm) Cho phơng trình (ẩn x): 2 2 2( 1) 2 0x m x m- + + + = 1) Giải phơng trình đã cho với m=1. 2) Tìm giá trị của m để phơng trình đã cho có hai nghiệm phân biệt x 1 , x 2 thoả mãn hệ thức: 2 2 1 2 10x x+ = . Bài IV (3,5 điểm) Cho đờng tròn (O; R) và A là một điểm nằm bên ngoài đờng tròn. Kẻ các tiếp tuyến AB, AC với đờng tròn (B, C là các tiếp điểm). 1) Chứng minh ABOC là tứ giác nội tiếp. 2) Gọi E là giao điểm của BC và OA. Chứng minh BE vuông góc với OA và OE.OA=R 2 . 3) Trên cung nhỏ BC của đờng tròn (O; R) lấy điểm K bất kì (K khác B và C). Tiếp tuyến tại K của đờng tròn (O; R) cắt AB, AC theo thứ tự tại các điểm P và Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC. 4) Đờng thẳng qua O, vuông góc với OA cắt các đờng thẳng AB, AC theo thứ tự tại các điểm M, N. Chứng minh PM+QN MN. Bài V (0,5 điểm) Giải phơng trình: ( ) 2 2 3 2 1 1 1 2 2 1 4 4 2 x x x x x x- + + + = + + + Hết HNG DN GII THI VO LP 10 THPT (2009-2010) CU NI DUNG IM 1 Bi toỏn v phõn thc i s 2,5 1.1 Rỳt gn biu thc t = = ; ,y x x y y y 2 0 2 0,5 5 5 Đề chính thức Đề thiTuyển sinh 10 của 20 tỉnh thành 2009-2010 ( có đáp án ) St/11C Khi đó = + + − + − y A y y y 2 2 1 1 2 2 4 ( ) ( ) ( ) + − = + + − − − + + = = = − + − − y y y y y y y y y y y y y y y 2 2 2 2 2 2 2 2 4 4 4 2 2 2 2 2 4 Suy ra = − x A x 2 0,5 1.2 Tính giá trị A khi =x 25 Khi = ⇒ = = − x A 25 5 25 3 25 2 0,5 1.3 Tìm x khi − =A 1 3 ( ) − − = ⇔ = − ⇔ = − + ⇔ = ⇔ = ⇔ = ⇔ = ≥ ≠tho¶ m·n ®k 0,x 4 y A y y y y y x x x 1 1 3 2 3 3 2 4 2 1 1 1 2 2 4 1 2 Giải bài toán bằng cách lập phương trình hay hệ phương trình 2.5đ * Gọi:  Số áo tổ  may được trong 1 ngày là x ( ) ∈ >¥ ;x x 10  Số áo tổ  may được trong 1 ngày là y ( ) ∈ ≥¥ ,y y 0 0,5 * Chênh lệch số áo trong 1 ngày giữa 2 tổ là: − =x y 10 * Tổng số áo tổ  may trong 3 ngày, tổ  may trong 5 ngày là: + =x y3 5 1310 ( ) ( ) = − − =   ⇔   + = + − =   = −  ⇔  − =  =  ⇔  =  Ta cã hÖ tho¶ m·n ®iÒu kiÖn y x x y x y x x y x x x y 10 10 3 5 1310 3 5 10 1310 10 8 50 1310 170 160 Kết luận: Mỗi ngày tổ  may được 170(áo), tổ  may được 160(áo) 2 3 Phương trình bậc hai 1đ 3.1 Khi =m 1 ta có phương trình: − + =x x 2 4 3 0 Tổng hệ số + + =a b c 0 ⇒ Phương trình có 2 nghiệm = = =; c x x a 1 2 1 3 0,5 3.2 * Biệt thức ( ) ( ) ∆ = + − + = −' x m m m 2 2 1 2 2 1 Phương trình có 2 nghiệm ≤x x 1 2 ⇔ ∆ = − ≥ ⇔ ≥' x m m 1 2 1 0 2 0,25 * Khi đó, theo định lý viét ( ) −  + = = +     = = +   b x x m a c x x m a 1 2 2 1 2 2 1 2 ( ) ( ) ( ) + = + − = + − + = + Ta cã x x x x x x m m m m 2 2 2 1 2 1 2 1 2 2 2 2 2 4 1 2 2 2 8 0,25 6 6 Đề thiTuyển sinh 10 của 20 tỉnh thành 2009-2010 ( có đáp án ) St/11C ( ) *Theo yªu cÇu: lo¹i x x m m m m m m + = ⇔ + = =  ⇔ + − = ⇔  = −  2 2 2 1 2 2 10 2 8 10 1 2 8 10 0 5 Kết luận: Vậy m = 1 là giá trị cần tìm. 4 Hình học 3,5 4.1 1đ * Vẽ đúng hình và ghi đầy đủ giả thiết kết luận 0,5 * Do AB, AC là 2 tiếp tuyến của (O) · · ⇒ = = °ACO ABO 90 ⇒ Tứ giác ABOC nội tiếp được. 0,5 4.2 1đ * AB, AC là 2 tiếp tuyến của (O) ⇒ AB = AC Ngoài ra OB = OC = R Suy ra OA là trung trực của BC ⇒ ⊥OA BE 0,5 * ∆OAB vuông tại B, đường cao BE Áp dụng hệ thức liên hệ các cạnh ta có: = =.OE OA OB R 2 2 0,5 4.3 1đ * PB, PK là 2 tiếp tuyến kẻ từ P đến (O) nên PK = PB tương tự ta cũng có QK = QC 0,5 * Cộng vế ta có: + = + ⇔ + + + = + + + ⇔ + + = + ⇔ ∆ = + = Chu vi Kh«ng®æi PK KQ PB QC AP PK KQ AQ AP PB QC QA AP PQ QA AB AC APQ AB AC 0,5 4.4 0,5 Cách 1 ∆MOP đồng dạng với ∆NQO ( ) ( ) B®tC«si Suy ra: . . . ®pcm OM MP QN NO MN MP QN OM ON MN MP QN MP QN MN MP QN = ⇔ = = ⇔ = ≤ + ⇔ ≤ + 2 2 2 4 4 0,5 7 7 Đề thiTuyển sinh 10 của 20 tỉnh thành 2009-2010 ( có đáp án ) St/11C Cách 2 * Gọi H là giao điểm của OA và (O), tiếp tuyến tại H với (O) cắt AM, AN tại X, Y. Các tam giác NOY có các đường cao kẻ từ O, Y bằng nhau ( = R) ⇒ ∆NOY cân đỉnh N ⇒ NO = NY Tương tự ta cũng có MO = MX ⇒ MN = MX + NY. Khi đó: XY + BM + CN = XB + BM + YC + CN = XM + YN = MN * Mặt khác MP + NQ = MB + BP + QC + CN = MB + CN + PQ ( ) ** ≥ MB + CN + XY = MN 0,5 5 Giải phương trình chứa căn 0,5đ * ( ) ( ) ( )     ⇔ − + + = + + = + +  ÷  ÷     PT x x x x x x 2 2 2 2 1 1 1 1 2 1 1 1 4 2 2 2 Vế phải đóng vai trò là căn bậc hai số học của 1 số nên phải có ≥ VP 0 Nhưng do ( ) + > ∀ ∈¡x x 2 1 0 nên − ≥ ⇔ + ≥ ⇔ ≥ VP x x 1 1 0 0 2 2 Với điều kiện đó:   + = + = +  ÷   x x x 2 1 1 1 2 2 2 0,25 ( ) ( ) ( ) ( ) ⇔ − + + = + + ⇔ + + = + + ⇔ + = + + − + = = ⇔ ⇔ = + =    ÷      ÷        ÷  ÷             Tho¶ m·n®iÒu kiÖn * T x x x x x x x x x x x x x x x P 1 1 1 2 2 1 4 2 2 1 1 2 2 1 4 2 1 1 2 1 2 2 1 1 0 2 2 2 0 1 1 Tập nghiệm: { } − = ;S 1 0 2 0,25 8 8 thiTuyn sinh 10 ca 20 tnh thnh 2009-2010 ( cú ỏp ỏn ) St/11C Sở GD và ĐT Thành phố Hồ Chí Minh Kì thi tuyển sinh lớp 10Trung học phổ thông Năm học 2009-2010Khoá ngày 24-6-2009 Môn thi: toán Câu I: Giải các phơng trình và hệ phơng trình sau: a) 8x 2 - 2x - 1 = 0 b) 2 3 3 5 6 12 x y x y + = = c) x 4 - 2x 2 - 3 = 0 d) 3x 2 - 2 6 x + 2 = 0 Câu II: a) Vẽ đồ thị (P) của hàm số y = 2 2 x và đthẳng (d): y = x + 4 trên cùng một hệ trục toạ độ. b) Tìm toạ độ giao điểm của (P) và (d) bằng phép tính. Câu III: Thu gọn các biểu thức sau: A = 4 8 15 3 5 1 5 5 + + + B = : 1 1 1 x y x y x xy xy xy xy + + ữ ữ ữ + Câu IV: Cho phơng trình x 2 - (5m - 1)x + 6m 2 - 2m = 0 (m là tham số) a) Chứng minh phơng trình luôn có nghiệm với mọi m. b) Gọi x 1 , x 2 là nghiệm của phơng trình. Tìm m để x 1 2 + x 2 2 =1. Câu V: Cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp đờng tròn (O) có tâm O, bán kính R. Gọi H là giao điểm của ba đờng cao AD, BE, CF của tam giác ABC. Gọi S là diện tích tam giác ABC. a) Chúng minh rằng AEHF và AEDB là các tứ giác nội tiếp đờng tròn. b) Vẽ đờng kính AK của đờng tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau. Suy ra AB.AC = 2R.AD và S = . . 4 AB BC CA R . c) Gọi M là trung điểm của BC. Chứng minh EFDM là tứ giác nội tiếp đờng tròn. d) Chứngminh rằng OC vuông góc với DE và (DE + EF + FD).R = 2 S. Gợi ý đáp án 9 9 Đề thiTuyển sinh 10 của 20 tỉnh thành 2009-2010 ( có đáp án ) St/11C 10 10 [...]... 4 ữ 24 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 25 St/11C 25 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 26 St/11C 26 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 27 St/11C 27 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 28 St/11C 28 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 29 St/11C 29 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn... tròn tâm (O) nằm ngoài ngũ giác ABFCE Gợi ý Đáp án: 16 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 17 St/11C 17 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 18 St/11C S GIO DC V O TO LM NG K THI TUYN SINH VO LP 10 THPT Khúa ngy : 18 thỏng 6 nm 200 9 CHNH THC ( thi gm 1 trang) Mụn thi : TON Thi gian lm bi: 120 phỳt (khụng k thi gian phỏt ) ab + b a + a + 1 ( a 0 ) Cõu 1: (0,5)... vậy AB.MN lớn nhất khi MN lớn nhất nghĩa là MN 2 là đớng kính Hay M là chính giữa của cung nhỏ AB 33 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 34 St/11C S GIO DC V O TO AN GIANG chớnh thc SBD S PHềNG THI TUYN SINH VO LP 10 Nm hc :200 9 -201 0 Khúa ngy 28/06 /200 9 Mụn TON ( CHUNG) Thi gian : 120 phỳt (Khụng k thi gian phỏt ) Bi 1: (1,5 im) 1/.Khụng dựng mỏy tớnh, hóy tớnh giỏ tr biu thc sau... chia tam giỏc ABM thnh hai hn Tớnh din tớch phn ca tam giỏc ABM nm ngoi (O) 30 thiTuyn sinh 10 ca 20 tnh thnh St/11C Sở giáo dục đào tạo Hải Dơng Đề chính thức 200 9 -201 0 ( cú ỏp ỏn ) 31 Kỳ THI TUYểN SINH Lớp 10 THPT Năm học :200 9 -201 0 Môn :TON Thời gian lm bi: 120 phút, không kể thời gian giao đề Ngày 06 tháng 07 năm 200 9(buổi chiều) Câu I(2 điểm): 1) Giải phơng trình: 2(x-1) =3- x y = x 2 2) Giải... minh t giỏc AEHD ni tip tip D 0,25 0,25 (1) ã ã ã ã ã ị HAD = HED = HEF ị FED = 2FAD (2) 0,25 ã ã T (1) v (2) ị FOB = FED => t giỏc DEFO ni H A 0,25 O 0,25 B 20 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 21 St/11C Chỳ ý: Nu HS gii ỳng bng cỏch khỏc thỡ giỏm kho phõn bc tng ng cho im - -S GIO DC V O TO QUNG NAM CHNH THC K THI TUYN SINH LP 10 THPT NM HC 200 9 -201 0 Mụn thi TON ( chung... trờn ng trũn (O) 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 0,25 C 0,25 0,25 13 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 14 St/11C S GIO DC &O TO TNH BèNH NH CHNH THC THI TUYN SINH TRUNG HC PH THễNG NM HC 200 9 -201 0 Mụn thi: TON ( H s 1 mụn Toỏn chung) Thi gian: 120 phỳt (khụng k thi gian phỏt ) ***** Bi 1: (1,5 im) Cho P = x+2 x +1 x +1 + x x 1 x + x + 1 x 1 a Rỳt gn P... thc xy ra khi v 2 2 1 + b 1 + c 1 + a2 ch khi a = b = c = 1 15 thiTuyn sinh 10 ca 20 tnh thnh 200 9 -201 0 ( cú ỏp ỏn ) 16 St/11C Sở GD&ĐT Cần Thơ Đề thi tuyển sinh lớp 10 Năm học: 200 9 - 201 0 Môn: Toán Thời gian làm bài: 120 phút Câu I: (1,5đ) Cho biểu thức A = 1 x + x 1 1 x x 1 x xx 1 x 1/ Rút gọn biểu thức A 2/ Tìm giá trị của x để A > 0 Câu II: (2,0đ) Giải bất phơng trình và các phơng... thiTuyn sinh 10 ca 20 tnh thnh 11 200 9 -201 0 ( cú ỏp ỏn ) St/11C S GIO DC V O TO TNH PH YấN CHNH THC THI TUYN SINH TRUNG HC PH THễNG NM HC 200 9 -201 0 Mụn thi: TON Thi gian: 120 phỳt (khụng k thi gian phỏt ) ***** Cõu 1.(2,0 im) 2 x + y = 1 3 x + 4 y = 14 25 2 b) Trc cn thc mu: A = 7 + 2 6 , B... 2y2 + 2y + 10 Hết Họ và tên thí sinh Chữ ký của giám thị 1 Sở giáo dục đào tạo Hải dơng Số báo danh Chữ ký của giám thị 2 Hớng dẫn chấm thiTUYểN SINH Lớp 10 THPT Năm học :200 9 -201 0 Môn :TON 31 thiTuyn sinh 10 ca 20 tnh thnh 32 200 9 -201 0 ( cú ỏp ỏn ) St/11C 5 Câu I:1 / Giải hệ PT : 2(x-1) = 3-x 3x= 5 x = y = x 2 3 x y = 2 2x 2y = 4 y = 1 2/ Giải hệ PT sau : 2 x + 3y = 9... nhanh hơn xe thứ 2 là 10km/h Tính vận tốc của mỗi ôtô biết rằng quãng đờng Ab là 300 km Gọi x km/h là vận tốc của xe thứ nhất (x >10) Thì vận tốc của xe thứ 2 là x -10 (km/h) Thì thời gian của xe thứ nhất từ A đến B là thời gian của xe thứ 2 từ A đến B là Theo bài ra có PT : 300 (h) x 300 (h) x 10 300 300 =1 Giải PT ra có các nghiệm là x = - 50 và x = 60 x 10 x Vậy vận tốc của xe thứ nhất là 60 km/h . án 9 9 Đề thiTuyển sinh 10 của 20 tỉnh thành 200 9 -201 0 ( có đáp án ) St/11C 10 10 Đề thiTuyển sinh 10 của 20 tỉnh thành 200 9 -201 0 ( có đáp án ) St/11C SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH PHÚ YÊN ĐỀ CHÍNH. 16 16 Đề thiTuyển sinh 10 của 20 tỉnh thành 200 9 -201 0 ( có đáp án ) St/11C 17 17 Đề thiTuyển sinh 10 của 20 tỉnh thành 200 9 -201 0 ( có đáp án ) St/11C SỞ GIÁO DỤC VÀ ĐÀO TẠO LÂM ĐỒNG ĐỀ CHÍNH. Đề thiTuyển sinh 10 của 20 tỉnh thành 200 9 -201 0 ( có đáp án ) St/11C Së GD - §T K× thi tun sinh líp 10 n¨m häc 200 9 -201 0 Kh¸nh hoµ m«n: to¸n Ngµy thi : 19/6 /200 9 Thêi gian lµm bµi: 120 phót

Ngày đăng: 04/07/2014, 22:00

HÌNH ẢNH LIÊN QUAN

Hình chữ nhật đã cho một vòng quanh cạnh MN ta được một hình trụ  có thể tích bằng - 20 Đề thi TS 10 của 20 Tình thành -có HD giải(09-10)
Hình ch ữ nhật đã cho một vòng quanh cạnh MN ta được một hình trụ có thể tích bằng (Trang 47)

TỪ KHÓA LIÊN QUAN

w