Nguyễn Văn Tâm: ĐỀ 5 Câu I ( 3,0 điểm ) Cho hàm số 4 2 2 1− −= x xy có đồ thị (C) a.Khảo sát sự biến thiên và vẽ đồ thị (C). b.Viết phương trình tiếp tuyến của (c) tại điểm có hoành độ là 2 b.Dùng đồ thị (C ) , hãy biện luận theo m số nghiệm thực của phương trình 4 2 2 0 − − = x x m Câu II ( 3,0 điểm ) a.Giải phương trình 4 8 2 log 4log log 13x x x+ + = b.Tính tích phân : I = 1 3 0 ( ) x x x e dx+ ∫ c.Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 3 2 2 3 12 2 + − + x x x trên [ 1;2]− Câu III ( 1,0 điểm ) Cho tứ diện SABC có ba cạnh SA,SB,SC vuông góc với nhau từng đôi một với SA = 1cm,SB = SC = 2cm .Xác định tân và tính bán kính của mặt cấu ngoại tiếp tứ diện , tính diện tích của mặt cầu và thể tích của khối cầu đó . Câu IV. ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho 4 điểm A( − 2;1; − 1) ,B(0;2; − 1) ,C(0;3;0) D(1;0;1) . a. Viết phương trình đường thẳng BC . b. Chứng minh rằng 4 điểm A,B,C,D không đồng phẳng . c. Tính thể tích tứ diện ABCD . Câu V. ( 1,0 điểm ) : Tính giá trị của biểu thức 2 2 (1 2 ) (1 2 )= − + +P i i .: Câu VI Trong không gian với hệ tọa độ Oxyz cho điểm M(1; − 1;1) , hai đường thẳng 1 1 ( ) : 1 1 4 − ∆ = = − x y z , 2 2 ( ) : 4 2 1 = − ∆ = + = x t y t z và mặt phẳng (P) : 2 0+ =y z a. Tìm điểm N là hình chiếu vuông góc của điểm M lên đường thẳng ( 2 ∆ ) . b. Viết phương trình đường thẳng cắt cả hai đường thẳng 1 2 ( ) ,( )∆ ∆ và nằm trong mặt phẳng (P) . Nguyễn Văn Tâm: ĐỀ 6 Câu I ( 3,0 điểm ) Cho hàm số 3 3 1− += x xy có đồ thị (C) a.Khảo sát sự biến thiên và vẽ đồ thị (C). b.Tìm m để phương trình : 3 1 2 log ( 1) 3m x x+ = − có 3 nghiệm . c.Viết phương trình tiếp tuyến với đồ thị (C) đi qua điểm M( 14 9 ; 1− ) . . Câu II ( 3,0 điểm ) a.Cho hàm số 2 − + = x x y e . Giải phương trình 2 0 ′′ ′ + + =y y y b.Tính tìch phân : 2 2 0 sin 2 2 sin x I dx x π = + ∫ c.Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3 2 2sin cos 4sin 1= + − +y x x x . Câu III ( 1,0 điểm ) Một hình nón có đỉnh S , khoảng cách từ tâm O của đáy đến dây cung AB của đáy bằng a , · 30= o SAO , · 60= o SAB . Tính độ dài đường sinh theo a . Câu IV. ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng 1 1 2 ( ) : 2 2 1 − − ∆ = = − − x y z , 2 2 ( ) : 5 3 4 = − ∆ = − + = x t y t z a. Chứng minh rằng đường thẳng 1 ( )∆ và đường thẳng 2 ( )∆ chéo nhau . b. Viết phương trình mặt phẳng ( P ) chứa đường thẳng 1 ( )∆ và song song với đường thẳng 2 ( )∆ . Câu V. ( 1,0 điểm ) : Giải phương trình 3 8 0 + = x trên tập số phức Câu VI ; Trong không gian với hệ tọa độ Oxyz cho điểm M(2;3;0) , mặt phẳng (P ) : 2 1 0 + + + = x y z và mặt cầu (S) : 2 2 2 2 4 6 8 0+ + − + − + =x y z x y z . a.Tìm tâm ,bán kính (s). b. Tìm điểm N là hình chiếu của điểm M lên mặt phẳng (P) . c. Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với mặt cầu (S) . Nguyễn Văn Tâm: ĐỀ 7 Câu I ( 3,0 điểm ) Cho hàm số 3 2 − − = x x y có đồ thị (C) a.Khảo sát sự biến thiên và vẽ đồ thị (C). b.Tìm tất cả các giá trị của tham số m để đường thẳng (d) : y = mx + 1 cắt đồ thị của hàm số đã cho tại hai điểm phân biệt . c/ Tính diện tích hình phẳng giới hạn bởi (c ) và hai trục . Câu II ( 3,0 điểm ) a.Giải bất phương trình ln (1 sin ) 2 2 2 log ( 3 ) 0 π + − + ≥e x x b.Tính tìch phân : I = 2 2 0 ( sin )cos 2 2 x x x e dx π + ∫ c.Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số 1 x x e y e = + trên đoạn [ln 2 ; ln 4] . Câu III ( 1,0 điểm ) Cho hình lăng trụ tam giác đều ABC.A’B’C’ có tất cà các cạnh đều bằng a .Tính thể tích của hình lăng trụ và diện tích của mặt cầu ngoại tiếp hình lăng trụ theo a . Câu IV. ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho hai đường thẳng 1 2 2 ( ) : 3 = − = = x t d y z t và 2 2 1 ( ) : 1 1 2 − − = = − x y z d . a. Chứng minh rằng hai đường thẳng 1 2 ( ),( )d d vuông góc nhau nhưng không cắt nhau . b.Viết phương trình mặt phẳng ( α ) chứa d1 và song song d2 b. Viết phương trình đường vuông góc chung của 1 2 ( ),( )d d . Câu V. ( 1,0 điểm ) : Tìm môđun của số phức 3 5 1 4 (1 ) (1 )z i i i= + + − − − . Câu VI. Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng ( α ) : 2 2 3 0− + − =x y z và hai đường thẳng ( 1 d ) : 4 1 2 2 1 − − = = − x y z , ( 2 d ) : 3 5 7 2 3 2 + + − = = − x y z . a. Chứng tỏ đường thẳng ( 1 d ) song song mặt phẳng ( α ) và ( 2 d ) cắt mặt phẳng ( α ) . b. Tính khoảng cách giữa đường thẳng ( 1 d ) và ( 2 d ). c. Viết phương trình đường thẳng ( ∆ ) song song với mặt phẳng ( α ) , cắt đường thẳng ( 1 d ) và ( 2 d ) lần lượt tại M và N sao cho MN = 3 . Nguyễn Văn Tâm: ĐỀ 8 Câu I ( 3,0 điểm ) Cho hàm số 4 2 y = x 2− + x có đồ thị (C) a.Khảo sát sự biến thiên và vẽ đồ thị (C). b.Viết phương trình tiếp tuyến với đồ thị (C) đi qua điểm M ( 2 ;0) . . Câu II ( 3,0 điểm ) a.Giải bất phương trình sau: 4 2.25 10 x x x − < b.Tính tìch phân : I = 2 2 0 ( sin ) x x e x dx π + ∫ c.Tìm giá trị lớn nhất và giá trị nhỏ nếu có của hàm số 2 1 ,y x x= − Câu III ( 1,0 điểm ) Cho tứ diện ABCD đều cạnh a .Gọi H là hình chiếu của A lên (BCD) Tính độ dài AH Tính diện tích xung quanh và thể tích khối trụ có đáy đường tròn ngoại tiếp (BCD) và chiều cao AH. Câu IV. ( 2,0 điểm ) : Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC với các đỉnh là A(0; 2− ;1) , B( 3− ;1;2) , C(1; 1− ;4) . a. Viết phương trình chính tắc của đường trung tuyến kẻ từ đỉnh A của tam giác . b. Viết phương trình tham số của đường thẳng đi qua điểm C và vuông góc với mặt phẳng (OAB) với O là gốc tọa độ . Câu V. ( 1,0 điểm ) : Cho hình phẳng (H) giới hạn bởi các đường (C) : 1 2 1 = + y x , hai đường thẳng x = 0 , x = a >0 và trục hoành . Xác định giá trị của a để diện tích hình phẳng (H) bằng lna . Câu IV.: Trong không gian với hệ tọa độ Oxyz , cho điểm M ( 1;4;2)− và hai mặt phẳng ( 1 P ) : 2 6 0 − + − = x y z , ( 2 ) : 2 2 2 0+ − + =P x y z . a. Chứng tỏ rằng hai mặt phẳng ( 1 P ) và ( 2 P ) cắt nhau . Viết phương trình tham số của giao tuyến ∆ của hai mặt phằng đó . b. Tìm điểm H là hình chiếu vuông góc của điểm M trên giao tuyến ∆ .