A textbook of Computer Based Numerical and Statiscal Techniques part 25 ppsx

10 373 0
A textbook of Computer Based Numerical and Statiscal Techniques part 25 ppsx

Đang tải... (xem toàn văn)

Thông tin tài liệu

226 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 1. Using Lagrange’s formula, find the value of (i) y x if y 1 = 4, y 3 = 120, y 4 = 340, y 5 = 2544, (ii) y 0 if y –30 = 30, y –12 = 34, y 3 = 38, y 18 = 42, Sol. (i) Here, x 0 = 1, x 1 = 3, x 2 = 4, x 3 = 5, f(x 0 ) = 4, f(x 1 ) = 120, f(x 2 ) = 340, f(x 3 ) = 2544, Now using Lagrange’s interpolation formula, we have f(x) = ()()() ()()() () ()()() ()()() () 123 023 01 010103 101213 xx xx xx xx xx xx fx fx xxxxxx xxxxxx −−− −−− + −−− −−− + ()( )( ) ()()() () ()()() ()()() () 013 012 23 202123 303132 xx xx xx xx xx xx fx fx xxxxxx xxxxxx −− − − − − + −−− −−− f(x) = ()()() ()()() ()( )( ) ()( )( ) 345 145 4 120 131415 313435 xxx xxx −−− −−− ×+ × −−− −−− ()()() ()()() ()()() ()()() 135 134 340 2544 414345 515354 xxx xxx −−− −−− +×+× −−− −−− y x = f(x) = – 1 6 (x – 3) (x – 4) (x – 5) + 30 (x – 1) (x – 4) (x – 5) – 340 3 (x – 1) (x – 3) (x – 5) + 318 (x – 1) (x – 3) (x – 4) (ii) Here, x 0 = – 30, x 1 = – 12, x 2 = 3, x 3 = 18, y 0 = 30, y 1 = 34, y 2 = 38, y 3 = 42, Now from Lagrange’s interpolation formula, we have f(x) = ()()() ()()() () ()()() ()()() () 123 023 01 010203 101213 xx xx xx xx xx xx fx fx xxxxxx xxxxxx −−− −−− + −− − −−− + ()()() ()()() () ()()() ()()() () 01 3 0 12 23 202123 303132 xx xx xx xx xx xx fx fx xxxxxx x xxxxx −−− −−− + −−− −−− y x = ()()() ()()() ()()() ()()() 12 3 18 30 3 18 30 34 30 12 30 3 30 18 12 30 12 3 12 18 xxx xxx +−− +−− ×+ × −+ −− −− −+ −− −− + ()()() ()()() ()()() ()()() 30 12 18 30 12 3 38 42 330312318 18301812183 xxx xxx ++− ++− ×+ × ++− + +− y x = – 0.001052188 (x + 12) (x – 3) (x – 18) + 0.00419753 (x + 30) (x – 3) (x – 18) – 0.005117845 (x + 30) (x + 12) (x – 18) + 0.001944444 (x + 30) (x + 12) (x – 3) for x = 0 y 0 = – 0.001052188 (12) (–3) (–18) + 0.00419753 (30) (–3) (–18) – 0.005117895 (30) (12) (–18) + 0.001944444 (30) (12) (–3) INTERPOLATION WITH UNEQUAL INTERVAL 227 y 0 = – 0.681817824 + 6.7999986 + 33.1636356 – 2.09999952 y 0 = 39.9636546 – 2.781817344 y 0 = 37.1818. Ans. Example 2. If y 0 , y 1 , y 2 , y 3 y 9 are consecutive terms of a series. Prove that y 5 = 1 70 [56(y 4 + y 6 ) – 28 (y 3 + y 7 ) + 8 (y 2 + y 8 ) – (y 1 + y 9 )] Sol. Here, the arguments are 1, 2, 3, 9 so for these values Lagrange’s formula is given by ()()()()()()()() 12346789 x y xxxxxxxx −−−−−−−− = () ()()()()()()() 1 11235678 y x − −−−−−−− + () ()()()()()() − −−−−−− 2 21124567 y x + () ()()()()()() − −−−−− 3 32113456 y x + () ()()()() 4 43.2.12345 y x − −−−− + () ()()() 6 6 5.4.3.2 1 2 3 y x −−−− + 7 ( 7)6.5.4.3.1( 2)( 1) y x −−− + () () 8 8 7.6.5.4.2.1 1 y x −− () ()()()()()()()() 9 9 8.7.6.5.3.2.1 1 2 3 4 6 7 8 9 x yy x xxxxxxxx + − −−−−−−−− = () () () () () () () 12346 1 10080 2 1680 720 3 720 4 720 6 yyyyy xx xxx ++++ −− −−−−−− () () ++ −− − 78 720 7 1680 8 yy xx + () 9 10080 9 y x − Now for y 5 , put x = 5 ()()()() () 5123 4. 3. 2. 1 1 2 3 4 4 10080 3 1680 720 2 yyyy =++ −−− − −× × − × ()( )() () ()()( ) 46 7 8 9 720 1 1 720 2 720 1680 3 4 10080 yy y y y ++ + + + × − ×− − × − ×− − ×− 5 576 y = 12346789 40320 5040 1440 720 720 1440 5040 40320 y y yyyy y y −+−++−+− 5 576 y = ()()() () 46 37 28 19 11 1 1 720 1440 5040 40320 yy yy yy yy +− −+ +− + y 5 = () ()() () 46 37 28 19 576 576 576 576 720 1440 5040 40320 yy y y y y y y +− ++ +− − y 5 = () () () () 46 37 28 19 70 576 576 70 576 70 576 70 1 70 720 1440 5040 40320 yy yy yy yy ××××   +− ++ +− +     y 5 = 1 70 [56 (y 4 + y 6 ) – 28 (y 3 + y 7 ) + 8 (y 2 + y 8 ) – (y 1 + y 9 )]. Proved. 228 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 3. Find f(x) as a polynomial of x if x :–10367 f(x) : 3 –6 39 822 1611 Sol. Now from Lagrange’s interpolation formula, P(x) = f(x) = ()()()() ()()( )( ) ()()()() () ()() () 0367 1367 36 10 13 16 17 01(03)0607 xxxx xxxx −−−− +−−− ×+ ×− −− −− − − − − + − − − ()()()() ()()()() () ()()() ()()() () 1037 1067 39 822 31303637 61606367 xx x x xxxx +−− − +−−− +×+ × +−−− +−−− + ()()()() ()()()() 1063 1611 71707376 xxxx +−−− × +−−− P(x) = 3 224 x(x – 3) (x – 6) (x – 7) + 6 126 (x + 1) (x – 3) (x – 6) (x – 7) + 39 144 (x + 1)x (x – 6) (x – 7) – 822 126 (x + 1)x (x – 3) (x – 7) + 1611 224 (x + 1)x (x – 6) (x – 3) P(x) = 3 224 (x 4 – 16x 3 + 81x 2 – 126x) + 39 144 (x 4 – 12x 3 + 29x 2 + 42x) + 6 126 (x 4 – 15x 3 + 23x 2 – 45x – 126) – 822 126 (x 4 – 9x 3 + 11x 2 + 21x) + 1611 224 (x 4 – 8x 3 + 9x 2 + 18x) P(x)= x 4 3 16 3 12 39 15 6 822 9 1611 8 3 39 6 822 1611 224 144 126 126 224 224 144 126 126 224 x −× × × × ×   ++−+ + − − + −     + x 2 3 81 39 29 23 6 822 11 9 1611 224 144 126 126 224 ×××××  ++− +   + x 45 6 126 3 39 42 822 21 1611 18 6 126 224 144 126 224 −× × × × ×  −+− − −   P(x) = x 4 (1) + x 3 (–3) + x 2 (5) – 6 P(x) = x 4 – 3x 3 + 5x 2 – 6 which is the required polynomial. Example 4. Value of f(x) are given at a, b, c. Show that the maximum is obtained by x = () ( ) () ( ) () ( ) () () () () () () fa b c fb c a fc a b fa b c fb c a fc a b −+ −+ −  −+ −+ −  22 22 22 Sol. Here, x 0 = a, x 1 = b, x 2 = c, f(x 0 ) = f(a), f(x 1 ) = f(b), f(x 2 ) = f(c) By applying Lagrange’s formula, we have f(x) = ()() ()() () ()() ()() () ()() ()() () xbxc xaxc xaxb fa fb fc abac babc cacb −− −− −− ++ −− −− −− INTERPOLATION WITH UNEQUAL INTERVAL 229 f(x)= () () () () () ()() () () ()() () 222 x b cx bc x a cx ac x a bx ab fa fb fc ab a c b a bc c acb −+ + −+ + −+ + ++ −− −− −− For maximum, we have f’(x)= 0 i.e., f’(x)= () () ()() () () ()() () () ()() 222xbcfa xacfb xabfc abac babc cacb −+ −+ −+ ++ −− −− −− ={2x – (b + c)} (b – c) f(a) + {2x – (a + c)} (c – a) f(b) + {2x – (a + b)}(a–b) f (c) = 0 =2x [(b – c) f(a) + (c – a) f(b) + (a – b) f(c)] = (b 2 – c 2 ) f(a) + (c 2 – a 2 ) f(b) + (a 2 – b 2 ) f(c) (3 2 ≠ 0) ∴ x = () () () () () () () ()() ()() () 22 22 22 b c fa c a fb a b fc fa b c fb c a fc a b −+−+− −+ −+ − . Proved. Example 5. Applying Lagrange’s formula, find a cubic polynomial which approximate the following data x : –2 –1 2 3 y(x) : –12 –8 3 5 Sol. Now, using Lagrange’s formula, we have f(x)= ()()() () () ()() ()()() () ()()() 12312 2238 21 22 23 12 12 13 xxx xxx +−−×− +−−×− + −+ −− −− −+ −− −− + ()()() ()()() ()()() ()()() 2133 2125 222123 323132 xxx xxx ++−× ++−× + ++− ++− f(x)= 32 32 3 32 32 11 4 6 3 412 76 44 53 44 xxx xxx xx xxx   −+−− −−+− −−+ +−−   f(x)= x 3 2 3211 12 1 387 18243 211 5344 5 4 534 5 3 2 xx  −−+ + − ++ + ++− + − +−   ∴ f(x)=– 32 1 3 241 3.9 15 20 60 xx x−+− Example 6. (i) Determine by Lagrange’s formula, the percentage number of criminals under 35 years: Age % no. of Criminals Under 25 year 52 Under 30 years 67.3 Under 40 years 84.1 Under 50 years 94.4 (ii) Find a Lagrange’s interpolating polynomial for the given data: x 0 = 1, x 1 = 2.5, x 2 = 4, and x 3 = 5.5 f(x 0 ) = 4, f(x 1 ) = 7.5, f(x 2 ) = 13 and f(x 3 ) = 17.5 also, find the value of f(5) 230 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Sol. (i) Here x 0 = 25, x 1 = 30, x 2 = 40 and x 3 = 50 f(x 0 ) = 52, f(x 1 ) = 67.3, f(x 2 ) = 84.1 and f(x 3 ) = 94.4 By using Lagrange’s interpolation formula, we have f(x) = ()()() ()()() ()()() ()()() 30 40 50 25 40 50 52 67.3 25 30 25 40 25 50 30 25 30 40 30 50 xxx xxx −−− −−− ×+ × −−− −−− + ()()() ()()() ()()() ()()() 30 25 50 25 30 40 84.1 94.4 40 25 40 30 40 50 50 25 50 30 50 40 xxx xxx −−− −−− ×+ × −−− −−− Now for f(35), put x = 35 f(35) = ()( )( ) ()()() ()()( ) ()( )( ) ()( )( ) ()()( ) ()()() ()()() 5515 10515 51015 1055 52 67.3 84.1 94.4 5 15 25 5 10 20 15 10 10 25 20 10 −− −− − − ×+ × + × + × −− − − − − f(35) = – 10.5 + 50.475 + 42.05 + 4.72 f(35) = 77.405 (ii) By using Lagrange’s formula, we have f(x) = ()()() ()()() ()()( ) ()()( ) 2.545.5 145.5 47.5 12.51415.5 2.512.542.55.5 xxx xxx −−− −−− ×+ × −−− −−− + ()()() ()( )( ) ()( )() ()( ) () 12.55.5 12.54 13 17.5 4 1 4 2.5 4 5.5 5.5 1 5.5 2.5 5.5 4 xx x xx x −− − −− − ×+ × −− − − − − Put x = 5 f(5) = ()()( ) ()()() ()()( ) ()( )() ()( )( ) ()( )( ) ()( )() ()()() −− − ×+ × + × + × −−− −− − 2.5 1 0.5 4 1 0.5 4 2.5 0.5 4 2.5 1 4 7.5 13 17.5 1.5 3 4.5 1.5 1.5 3 3 1.5 1.5 4.5 3 1.5 f(5) = 5 15 65 175 20.25 6.75 6.75 20.25 −++ = 0.246913 – 2.2222 + 9.62962 + 8.641975 f(5) = 18.51850831 – 2.222222 = 16.296296. Ans. f(x)= ()()() ()()( ) 47.5 2.5 4 5.5 1 4 5.5 20.25 6.75 xxx xxx − −−−+ −−− + () 13 6.75 − (x – 1) (x – 2.5) (x – 5.5) + 17.5 20.25 (x – 1) (x – 2.5) (x – 4) P(x) = – 0.1481x 3 + 1.5555x 2 – 1.6666x + 4.2592 which is a required polynomial At x = 5, f(x) = 16.3012 (Approx.) Example 7. By means of Lagrange’s formula, show that (i) y 0 = 1 2 (y 1 – y –1 ) – 1 8 ()() 31 1 3 11 yy y y 22 −−  −− −   INTERPOLATION WITH UNEQUAL INTERVAL 231 (ii) y 3 = 0.05 (y 0 + y 6 ) – 0.3 (y 1 + y 5 ) + 0.75 (y 2 + y 4 ) (iii) y 1 = y 3 – 0.3 (y 5 – y –3 ) + 0.2 (y –3 – y –5 ) Sol. (i) For the arguments – 3, –1, 1, 3, the Lagrange’s formula is y x = ()()() ()() () ()()() ()()( ) 31 113 313 31 31 33 13 11 13 xxx x xx yy −− +−− + −− + − + −− −− −+ −− − − + ()()() ()()() ()()() ()()() 13 313 311 131113 333131 xxx xxx yy ++− ++− + ++− ++− y x = ()()() () ()()() 31 113 313 48 16 xxx x xx yy −− +−− +−− + − + ()()() () ()()() 13 313 311 16 48 xxx xxx yy ++− ++− + − (1) Putting x = 0 in (1), we get y 0 = – 1 16 y –3 + 9 16 y -1 + 9 16 y 1 – 1 16 y 3 = 1 2 (y 1 + y –1 ) – 1 8 ()() 31 1 3 11 22 yy y y −−  −− −   (ii) For the arguments 0, 1, 2, 4, 5, 6, the Lagrange’s formula is y x = ()()()()() ()()()()() ()()()()() () ()()()() 01 12456 02456 0102040506 1012141516 xxxxx xxxxx yy −−−−− −−−−− + −− − − − −−−−− + ()() ()()() ()()() ()() ()()()()() () ()()()() 24 01456 01256 2021242526 4041424546 xxxxx xxxxx yy −−−−− −−−−− + −−−− − −−−−− + ()()()()() ()() ()()() ()()()()() () ()()()() 56 01246 01245 50 515254 56 60616264 65 xxxxx xxxxx yy −−−−− −−−−− + − −−−− − −−−− (2) Putting x = 3 in (2), we get y 3 = 0.05 y 0 – 0.3 y 1 + 0.75 y 2 + 0.75 y 4 – 0.3 y 5 + 0.05y 6 y 3 = 0.05 (y 0 + y 6 ) – 0.3 (y 1 + y 5 ) + 0.75 (y 2 + y 4 ) (iii) For the arguments –5, –3, 3, 5, the Lagrange’s formula is y x = ()()() ()() () ()()() () ()() 53 335 535 5 3 5 3 55 35 33 35 xxx xxx yy −− +−− +−− + −+ −− −− −+ −− −− + ()()() ()()() ()()() ()()() 35 535 533 533335 555353 xxx xxx yy ++− ++− + ++− ++− (3) Putting x = 1 in equation (3), we get y 1 = (–0.2) y –5 + 0.5 y –3 + y 3 – 0.3y 5 = y 3 – 0.3 (y 5 – y –3 ) + 0.2 (y –3 – y –5 ) 232 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 8. Prove that Lagrange’s formula can be expressed in the () () () () 2n n 2n 0000 2n 1111 2n nnnn P x | x x x f x | x x x f x | x x x f x | x x x = 0 where P n (x) = f(x). Sol. Let P n (x) = a 0 + a 1 x + a 2 x 2 + a n x n (1) Given that P n (x) = f(x) ⇒ P n (x i ) = f(x i ); i = 0, 1, 2 , n (2) Substitute x = x 0 , x 1 , x 2 , x n Successively in equation (2) ⇒ f(x 0 ) = a 0 + a 1 x 0 + a 2 x 2 0 + + a n x 0 n f(x 1 ) = a 0 + a 1 x 1 + a 2 x 1 2 + + a n x 1 n f(x n ) = a 0 + a 1 x n + a 2 x 2 n + + a n x n n Now Eliminating a 0 , a 1 , a 2 , a n from above equations, we get () () () () 2 2 0000 2 1111 2 | | | | n n n n n nnnn Px xx x fx x x x fx x x x fx x x x − − − − = 0 or () () () () 2 2 0000 2 1111 2 | | | | n n n n n nnnn Px xx x fx x x x fx x x x fx x x x = 0 Example 9. Four equidistant values u –1 , u 0 , u 1 and u 2 being given, a value is interpolated by Lagrange’s formula show that it may be written in the form. u x = yu 0 + xu 1 + ( ) 2 yy 1 3! − ∆ 2 u –1 + ( ) 2 xx 1 3! − ∆ 2 u 0 where x + y = 1. Sol. ∆ 2 u 1 = (E – 1) 2 u –1 = (E 2 – 2E + 1) u –1 = u 1 – 2u 0 + u –1 ∆ 2 u 0 = (E 2 – 2E + 1) u 0 = u 2 – 2u 1 + u 0 R.H.S. = (1 – x) u 0 + xu 1 + ()() {} 2 11 1 3! xx −−− (u 1 – 2u 0 + u –1 ) + () 2 1 3! xx − (u 2 – 2u 1 + u 0 ) where y = 1 – x = – ()() ()()() ()() 101 12 212 1 2 622 xx x x x x x xx uuu − −− +−− + − ++ ()() 2 11 6 xxx u +− + (1) INTERPOLATION WITH UNEQUAL INTERVAL 233 Applying Lagrange’s formula for the arguments – 1, 0, 1 and 2. u x = () () ()()() ()()() ()( )( ) ()() ()()( ) ()() ()()() 1012 12 211 1 2 1 1 123 112 211 321 xx x x x x x xx x xx uuuu − −− −−+ + − + − +++ −−− −− − = ()() ()()() ()() ()() 1012 12 211 1 2 1 1 6226 xx x x x x x xx x xx uuuu − −− −−+ + − + − −+ −+ (2) From (1) and (2), we observe that R.H.S. = L.H.S. Hence the result. Example 10. Find the cubic Lagrange’s interpolating polynomial from the following data () :01 2 5 :2312147 x fx Sol. Here, () () () () 012 3 012 3 0, 1, 2, 5, 2, 3, 12, 147, xxx x fx fx fx fx === = === = Lagrange’s formula is f(x)= ()()( ) ()()() () ()()() ()()() () 12 3 023 01 010203 101213 xx xx xx xx xx xx fx fx xxxxxx xxxxxx −−− −−− + −−− −−− ()()( ) ()()() () ()()() ()()() () 01 3 012 23 202123 303132 xx xx xx xx xx xx fx fx xxxxxx xxxxxx −−− −−− ++ −−− −−− f(x)= ()()() () ()() () ()()() ()() () () 125 025 23 010205 101215 xxx xxx −−− −−− + −−− −−− ()()() ()()() () ()()() ()()() () 015 012 12 147 202125 505152 xxx xxx −−− −−− ++ −−− −−− = 1 5 − (x – 1) (x – 2) + 3 4 x (x – 2) (x – 5) – 2x (x – 1) (x – 5) + 49 20 x (x – 1) (x – 2) = – 1 5 (x 3 – 8x 2 + 17x – 10) + 3 4 (x 3 – 7x 2 + 10) – 2 (x 3 – 6x 2 + 5x) + 49 20 (x 3 – 3x 2 + 2x) ⇒ f(x)= x 3 + x 2 – x + 2 which is the required Lagrange’s interpolating polynomial. Example 11. The function y = f(x) is given at the points (7, 3), (8, 1), (9, 1) and (10, 9). Find the value of y for x = 9.5 using Lagrange’s interpolation formula. Sol. We are given () :78910 :311 9 x fx 234 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Here, () () () () 0123 0123 7, 8, 9, 10, 3, 1, 1, 9, xxxx fx fx fx fx ==== ==== Lagrange’s interpolation formula is f(x)= ()()() ()()() () ()()() ()()() () 123 023 01 010203 101213 xx xx xx xx xx xx fx fx xxxxxx xxxxxx −−− −−− + −−− −−− + ()()() ()()() () ()()() ()()() () 013 012 23 202123 303132 xx xx xx xx xx xx fx fx xxxxxx xxxxxx −−− −−− + −−− +−− = ()()( ) () () () () ()()( ) ()()( ) () ()()( ) ()()( ) () 8 9 10 7 9 10 7 8 10 311 7879710 8789810 9798910 xxx xxx xxx −−− −−− −−− ++ −−− −−− −−− ()()() ()()() () 789 9 10 7 10 8 10 9 xxx −−− + −−− = – 1 2 (x – 8) (x – 9) (x – 10) + 1 2 (x – 7) (x – 9) (x – 10) – 1 2 (x – 7) (x – 8) (x – 10) + 3 2 (x – 7) (x – 8) (x – 9) (1) Putting x = 9.5 in eqn. (1), we get f (9.5) = – 1 2 (9.5 – 8) (9.5 – 9) (9.5 – 10) + 1 2 (9.5 – 7) (9.5 – 9) (9.5 – 10) – 1 2 (9.5 – 7) (9.5 – 8) (9.5 – 10) + 3 2 (9.5 – 7) (9.5 – 8) (9.5 – 9) = 3.625 Example 12. Find the unique polynomial P(x) of degree 2 such that: P(1) = 1 P(3) = 27 P(4) = 64 Use Lagrange’s method of interpolation. Sol. Here, () () () 01 2 01 2 1, 3, 4, 1, 27, 64, xx x fx fx fx == = == = Lagrange’s interpolation formula is P(x)= ()() ()() () ()() ()() () ()() ()() () 12 02 01 012 0102 1012 1021 xx xx xx xx xx xx fx fx fx xxxx xxxx xxxx −− −− −− ++ −− −− −− = ()() ()() () ()() ()() () ()() ()() () 34 14 13 12764 1314 3134 4143 xx xx xx −− −− −− ++ −− −− −− = 1 6 (x 2 – 7x + 12) – 27 2 (x 2 – 5x + 4) + 64 3 (x 2 – 4x + 3) = 8x 2 – 19x + 12 Hence the required polynomial is, P(x) = 8x 2 – 19x + 12 INTERPOLATION WITH UNEQUAL INTERVAL 235 PROBLEM SET 5.1 1. Using Lagrange’s interpolation formula, find y(10) from the following table. :5 6 911 :12131416 X Y [Ans. 14.6666667] 2. Use Lagrange’s interpolation formula to fit a polynomial for the data :1023 : 83112 x x u − − Hence or otherwise find the value of u 1 .[Ans. u x = 2x 3 – 6x 2 + 3x + 3, u 1 = 2] 3. Compute the value of f(x) for x = 2.5 from the following data: () :12 3 4 :182764 x fx Using Lagrange’s interpolation method. [Ans. 15.625] 4. If y(1) = – 3, y(3) = 9, y(4) = 30 and y(6) = 132, find the four point Lagrange’s interpolation polynomial which takes the same values as the function y at the given points. [Ans. x 3 – 3x 2 + 5x – 6] 5. Find the polynomial of degree three which takes the values given below: :0124 :1125 x y [Ans. – 1 12 x 3 + 3 4 x 2 – 2 3 x + 1] 6. Find f(x) by using Lagrange’s interpolation formula: () :0234 : 659 705 729 804 x fx Also find maximum value of f(x)[Ans. 151 24 x 3 – 249 8 x 2 + 721 12 x + 659] [No real value of x exist for which f(x) is max.] 7. Given log 10 654 = 2.8156, log 10 658 = 2.8182, log 10 659 = 2.8189 and log 10 661 = 2.8202. Find log 10 656 by Lagrange’s interpolation formula [Ans. 2.8169] 8. Compute Sin 15° by Lagrange’s Method from the data given below: : 0 30 45 60 90 : 0.0000 0.50000 0.70711 0.86603 1.0000 x y °°°°° [Ans. 0.25859] 9. The percentage of Criminals for different age group are given below: Age less than :25304050 Percentage of Criminals :52678494 Apply Lagrange’s formula to find the percentage of criminals under 35 years of age. [Ans. 77] . Criminals for different age group are given below: Age less than :253 04050 Percentage of Criminals :52678494 Apply Lagrange’s formula to find the percentage of criminals under 35 years of age. [Ans Proved. 228 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 3. Find f(x) as a polynomial of x if x :–10367 f(x) : 3 –6 39 822 1611 Sol. Now from Lagrange’s interpolation formula, P(x). = () () () () () () () ()() ()() () 22 22 22 b c fa c a fb a b fc fa b c fb c a fc a b −+−+− −+ −+ − . Proved. Example 5. Applying Lagrange’s formula, find a cubic polynomial which approximate the following data x : –2 –1 2 3 y(x)

Ngày đăng: 04/07/2014, 15:20

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan