Show that the maximum is obtained by Sol... Applying Lagrange’s formula, find a cubic polynomial which approximate the following data Sol... Hence the result... Find the unique polynomia
Trang 1Example 1 Using Lagrange’s formula, find the value of
(i) y x if y 1 = 4, y 3 = 120, y 4 = 340, y 5 = 2544,
(ii) y 0 if y –30 = 30, y –12 = 34, y 3 = 38, y 18 = 42,
Sol (i) Here, x0 = 1, x1 = 3, x2 = 4, x3 = 5,
f(x0) = 4, f(x1) = 120, f(x2) = 340, f(x3) = 2544,
Now using Lagrange’s interpolation formula, we have
( 1) ( 2 ) ( 3 ) ( )0 ( ( 0)( ) ( 2)( )( 3) ) ( )1
+
( 0)( 1 )( 3 ) ( )2 ( ( 0)( )( 1) ( )( 2) ) ( )3
+
(1 3 1 4 1 53)( 4)( 5) 4 ( ( )(3 1 31)( 4 34)( )( 55) ) 120
( )( )( ) ( ( ) ( )( ) ( )( ) )
y x = f(x) = –1
6 (x – 3) (x – 4) (x – 5) + 30 (x – 1) (x – 4) (x – 5)
– 340
3 (x – 1) (x – 3) (x – 5) + 318 (x – 1) (x – 3) (x – 4)
(ii) Here, x0 = – 30, x1 = – 12, x2 = 3, x3 = 18,
y0 = 30, y1 = 34, y2 = 38, y3 = 42, Now from Lagrange’s interpolation formula, we have
( 1) ( 2 )( 3 ) ( )0 ( ( 0)( )( 2) ( )( 3) ) ( )1
+
( 0)( 1 ) ( 3 ) ( )2 ( ( 0)( ) ( 1) ( )( 2) ) ( )3
+
(3 3030 3 12 3 18)( 12)( 18) 38 (18( 30 18 12 18 330)( )( 12)( )( 3) ) 42
y x = – 0.001052188 (x + 12) (x – 3) (x – 18) + 0.00419753 (x + 30) (x – 3) (x – 18)
– 0.005117845 (x + 30) (x + 12) (x – 18) + 0.001944444 (x + 30) (x + 12) (x – 3)
for x = 0
y0 = – 0.001052188 (12) (–3) (–18) + 0.00419753 (30) (–3) (–18)
– 0.005117895 (30) (12) (–18) + 0.001944444 (30) (12) (–3)
Trang 2y0 = – 0.681817824 + 6.7999986 + 33.1636356 – 2.09999952
y0 = 39.9636546 – 2.781817344
y0 = 37.1818 Ans
Example 2 If y 0 , y 1 , y 2 , y 3 y 9 are consecutive terms of a series Prove that y 5 = 1
70
[56(y 4 + y 6 ) – 28 (y 3 + y 7 ) + 8 (y 2 + y 8 ) – (y 1 + y 9 )]
Sol Here, the arguments are 1, 2, 3, 9 so for these values Lagrange’s formula is given by
( 1)( 2)( 3)( 4)( 6)( 7)( 8) ( 9)
x
y
=
( 1) ( )( )( ) ( ) ( )( )( )1 2 31 5 6 7 8
y
2
2 1 1 2 4 5 6 7
y x
+
( −3 2 1) ( ) ( ) ( ) ( )( )( )−1 −33 −4 −5 −6
y
x + ( 4 3.2.1) ( ) ( ) ( ) ( )24 3 4 5
y
+
( 6 5.4.3.2) ( )( )( )6 1 2 3
y
x− − − − + ( 7)6.5.4.3.1( 2)( 1)7
y
x− − − + ( 8 7.6.5.4.2.1) 8 ( )1
y
( 9 8.7.6.5.3.2.1) 9 ( 1) ( 2)( 3)( 4)( 6)( 7)( 8)( 9)
x
+
=
( 1 10080)1( ) ( 2 1680)2( ) 720(3 3) 720(4 4) 720(6 6)
y
x−
Now for y5, put x = 5
4 3 2 1 1 2 3 4 4 10080 3 1680 720 2
5
576
y
40320 5040 1440 720 720 1440 5040 40320
5
576
y
720 y +y −1440 y −y + 5040 y +y − 40320 y +y
720 y +y −1440 y +y + 5040 y +y − 40320 y −y
1
y5 = 1
70 [56 (y4 + y6) – 28 (y3 + y7) + 8 (y2 + y8) – (y1 + y9)]. Proved
Trang 3Example 3 Find f(x) as a polynomial of x if
Sol Now from Lagrange’s interpolation formula,
(7 11 7)( 00 7)( 63 7)( 63) 1611
×
P(x) = 3
224 x(x – 3) (x – 6) (x – 7) +
6
126 (x + 1) (x – 3) (x – 6) (x – 7) + 39
144 (x + 1)x (x – 6) (x – 7) –
822
126 (x + 1)x (x – 3) (x – 7) +
1611
224 (x + 1)x (x – 6) (x – 3)
P(x) = 3
224 (x4 – 16x3 + 81x2 – 126x) +
39
144 (x4 – 12x3 + 29x2 + 42x)
+ 6
126 (x4 – 15x3 + 23x2 – 45x – 126) – 822
126 (x
4 – 9x3 + 11x2 + 21x) + 1611
224 (x
4 – 8x3 + 9x2 + 18x)
+ x2 3 81 39 29 23 6 822 11 9 1611
+ x− ×45 6126 −126 3224× +39 42144× −822 21126× −1611 18224× −6
P(x) = x4(1) + x3 (–3) + x2(5) – 6
P(x) = x4 – 3x 3 + 5x2 – 6 which is the required polynomial
Example 4 Value of f(x) are given at a, b, c Show that the maximum is obtained by
Sol Here, x0 = a, x1 = b, x2 = c,
f(x0) = f(a), f(x1) = f(b), f(x2) = f(c)
By applying Lagrange’s formula, we have
f(x) = ( )( )
(x a b b)(x a c c) f a( ) ( (x b a a b)( )(x c c) ) f b( ) ( (x c a x a c) ( ) ( b b) )f c( )
Trang 4f(x) = ( )
For maximum, we have
f’(x) = 0
( )( ) ( ( )( ) ( ) ) ( ( )( ) ( ) )
= {2x – (b + c)} (b – c) f(a) + {2x – (a + c)} (c – a) f(b) + {2x – (a + b)}(a–b) f (c) = 0
= 2x [(b – c) f(a) + (c – a) f(b) + (a – b) f(c)] = (b2 – c 2 ) f(a) + (c2 – a2) f(b) + (a2 – b2) f(c)
(3 2 ≠ 0)
Example 5 Applying Lagrange’s formula, find a cubic polynomial which approximate the following
data
Sol Now, using Lagrange’s formula, we have
+
(222 2 1 2)( 1 )( 33)3 ( (32)(2 3 1 3 2)( 1)( )( 2) )5
+
5 x − x + −x − 3x − x − x+ − 4x − x− +4 x +x − x−
∴ f(x) = – 1 3 3 2 241 3.9
15x −20x + 60 x−
Example 6 (i) Determine by Lagrange’s formula, the percentage number of criminals under 35
years:
(ii) Find a Lagrange’s interpolating polynomial for the given data:
x 0 = 1, x 1 = 2.5, x 2 = 4, and x 3 = 5.5 f(x 0 ) = 4, f(x 1 ) = 7.5, f(x 2 ) = 13 and f(x 3 ) = 17.5 also, find the value of f(5)
Trang 5Sol (i) Here x0 = 25, x1 = 30, x2 = 40 and x3 = 50
f(x0) = 52, f(x1) = 67.3, f(x 2 ) = 84.1 and f(x 3) = 94.4
By using Lagrange’s interpolation formula, we have
(25 30 2530)( 4040 25)( 5050) 52 (30( 25 3025) ( )( 4040 30) ( )( 5050) ) 67.3
(40 25 4030)( 2530)(405050) 84.1 (50( 25 5025)( )( 3030 50)( ) ( 4040) ) 94.4
Now for f(35), put x = 35
f(35) = ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ) ( ) ( ) ( ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( )
f(35) = – 10.5 + 50.475 + 42.05 + 4.72
f(35) = 77.405
(ii) By using Lagrange’s formula, we have
(1 2.5 1 4 1 5.52.5)( 4)( 5.5) 4 (2.5 1 2.5( 1)( ) ( 44 2.5)( )( 5.55.5) ) 7.5
4 1 4 2.5 4 5.5 5.5 1 5.5 2.5 5.5 4
Put x = 5
f(5) = ( )( )( )
( )( )( ) ( )( )( )
20.25−6.75+6.75+20.25 = 0.246913 – 2.2222 + 9.62962 + 8.641975
f(5) = 18.51850831 – 2.222222 = 16.296296. Ans
+ ( 13)
6.75
−
(x – 1) (x – 2.5) (x – 5.5) + 17.5
20.25 (x – 1) (x – 2.5) (x – 4)
P(x) = – 0.1481x3 + 1.5555x2 – 1.6666x + 4.2592
which is a required polynomial
At x = 5, f(x) = 16.3012 (Approx.)
Example 7 By means of Lagrange’s formula, show that
(i) y 0 = 1
2 (y 1 – y –1 ) –
1
Trang 6(ii) y 3 = 0.05 (y 0 + y 6 ) – 0.3 (y 1 + y 5 ) + 0.75 (y 2 + y 4 )
(iii) y 1 = y 3 – 0.3 (y 5 – y –3 ) + 0.2 (y –3 – y –5 )
Sol (i) For the arguments – 3, –1, 1, 3, the Lagrange’s formula is
+
( ) ( )( ) 1 ( ( ) ( ) ( )( )( ) ) 3
+
+
−
+
Putting x = 0 in (1), we get
y0 = –161 y–3 + 169 y -1 +169 y1 – 161 y3
= 1
2 (y1 + y–1) –1
8 ( 3 1) ( 1 3)
2 y y 2 y− y−
(ii) For the arguments 0, 1, 2, 4, 5, 6, the Lagrange’s formula is
( ) ( ) ( ) ( ) ( )
+
+
+
Putting x = 3 in (2), we get
y3 = 0.05 y0 – 0.3 y1 + 0.75 y2 + 0.75 y4 – 0.3 y5 + 0.05y6
y3 = 0.05 (y0 + y6) – 0.3 (y1 + y5) + 0.75 (y2 + y4)
(iii) For the arguments –5, –3, 3, 5, the Lagrange’s formula is
+
( ) ( )( ) 3 ( ( )( )( )( )( ) ) 5
+
Putting x = 1 in equation (3), we get
y1 = (–0.2) y–5 + 0.5 y–3 + y3 – 0.3y5
= y3 – 0.3 (y5 – y–3) + 0.2 (y–3 – y–5)
Trang 7Example 8 Prove that Lagrange’s formula can be expressed in the
( )
( ) ( ) ( )
2 n n
2 n
2 n
2 n
P x | x x x
= 0
where P n (x) = f(x).
Sol Let P n (x) = a0 + a1x + a2x2 + a n x n (1)
Given that P n (x) = f(x)
Substitute x = x0, x1, x2, x n Successively in equation (2)
⇒ f(x0) = a0 + a1x0 + a2x2
0+ + a n x0n
f(x1) = a0 + a1x1 + a2x12 + + a n x1n
f(x n ) = a0 + a1x n + a2x2
n + + a n x n
n Now Eliminating a0, a1, a2 , a n from above equations, we get
( ) ( ) ( ) ( )
2 2
2
2
|
|
|
|
n n
n n
n
−
−
−
−
( ) ( ) ( ) ( )
2 2
2
2
n n
n n
n
= 0
Example 9 Four equidistant values u –1 , u 0 , u 1 and u 2 being given, a value is interpolated by Lagrange’s formula show that it may be written in the form.
u x = yu 0 + xu 1 + y y( 2 1)
3!
−
∆2 u –1 + x x( 2 1)
3!
−
∆2 u 0 where x + y = 1.
Sol ∆2u1= (E – 1)2 u–1 = (E2 – 2E + 1) u–1 = u1 – 2u0 + u–1
∆2u0 = (E2 – 2E + 1) u0 = u2 – 2u1 + u0
R.H.S = (1 – x) u0 + xu1 +( ) ( { )2 }
3!
(u1 – 2u0 + u–1)
+ ( 2 1)
3!
(u2 – 2u1 + u0) where y = 1 – x
2
6
u
Trang 8Applying Lagrange’s formula for the arguments – 1, 0, 1 and 2.
( )( ) ( )
From (1) and (2), we observe that R.H.S = L.H.S
Hence the result
Example 10 Find the cubic Lagrange’s interpolating polynomial from the following data
( )
: 0 1 2 5 : 2 3 12 147
x
f x
Sol Here, ( )00 ( )11 ( )22 ( )33
Lagrange’s formula is
( 1)( 2 )( 3 ) ( )0 ( ( 0)( )( 2) ( )( 3) ) ( )1
+
( 0)( 1 )( 3 ) ( )2 ( ( 0)( ) ( 1)( )( 2) ) ( )3
f(x) = ( ) ( ) ( )
( )( ) ( ) ( )
+
( )( )( ) ( ) ( ( )( )( ) ( )( ) ) ( )
= 1
5
−
(x – 1) (x – 2) + 3
4x (x – 2) (x – 5) – 2x (x – 1) (x – 5) +
49
20x (x – 1) (x – 2)
= – 1
5 (x
3 – 8x2 + 17x – 10) +3
4 (x
3 – 7x2 + 10) – 2 (x3 – 6x2 + 5x)
+ 49
20 (x
3 – 3x2 + 2x)
⇒ f(x) = x3 + x2 – x + 2
which is the required Lagrange’s interpolating polynomial
Example 11 The function y = f(x) is given at the points (7, 3), (8, 1), (9, 1) and (10, 9) Find
the value of y for x = 9.5 using Lagrange’s interpolation formula.
Sol We are given
( )
: 7 8 9 10 : 3 1 1 9
x
f x
Trang 9Here, ( )00 ( )11 ( )22 ( )33
Lagrange’s interpolation formula is
( 1)( 2 )( 3 ) ( )0 ( ( 0)( )( 2)( )( 3) ) ( )1
+
( 0)( 1 )( 3 ) ( )2 ( ( 0)( )( 1)( )( 2) ) ( )3
+
( ) ( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( ) ) ( ) ( ( ) ( ) ( ) ( ) ( ) ) ( )
9
10 7 10 8 10 9
+
= – 1
2 (x – 8) (x – 9) (x – 10) +
1
2 (x – 7) (x – 9) (x – 10) –
1
2 (x – 7) (x – 8) (x – 10) + 3
2 (x – 7) (x – 8) (x – 9) .(1)
Putting x = 9.5 in eqn (1), we get
f (9.5) = –1
2 (9.5 – 8) (9.5 – 9) (9.5 – 10) +
1
2 (9.5 – 7) (9.5 – 9) (9.5 – 10) – 1
2 (9.5 – 7) (9.5 – 8) (9.5 – 10) +
3
2 (9.5 – 7) (9.5 – 8) (9.5 – 9)
= 3.625
Example 12 Find the unique polynomial P(x) of degree 2 such that:
Use Lagrange’s method of interpolation.
Lagrange’s interpolation formula is
( 1)( 2 ) ( )0 ( ( 0)( ) ( 2) ) ( )1 ( ( 0)( )( 1) ) ( )2
(1 3 1 43)( 4) ( )1 ( (3 1 31)( )( 44) ) ( )27 ( (4 1 41)( )( 33) ) ( )64
= 1
6 (x
2 – 7x + 12) – 27
2 (x
2 – 5x + 4) + 64
3 (x
2 – 4x + 3)
= 8x2 – 19x + 12
Hence the required polynomial is,
P(x) = 8x2 – 19x + 12
Trang 10PROBLEM SET 5.1
1 Using Lagrange’s interpolation formula, find y(10) from the following table.
: 5 6 9 11 : 12 13 14 16
X
2 Use Lagrange’s interpolation formula to fit a polynomial for the data
: 1 0 2 3 : 8 3 1 12
x
x u
−
−
Hence or otherwise find the value of u1 [Ans ux = 2x3 – 6x2 + 3x + 3, u1 = 2]
3 Compute the value of f(x) for x = 2.5 from the following data:
( ) : 1 2: 1 8 27 643 4
x
f x
4 If y(1) = – 3, y(3) = 9, y(4) = 30 and y(6) = 132, find the four point Lagrange’s interpolation polynomial which takes the same values as the function y at the given points.
[Ans x3 – 3x2 + 5x – 6]
5 Find the polynomial of degree three which takes the values given below:
: 0 1 2 4 : 1 1 2 5
x
4x
2 – 2
3x + 1]
6 Find f(x) by using Lagrange’s interpolation formula:
( )
: 659 705 729 804
x
f x
Also find maximum value of f(x) [Ans 151
24 x
3 – 249
8 x
2 + 721
12 x + 659]
[No real value of x exist for which f(x) is max.]
7 Given log10 654 = 2.8156, log10 658 = 2.8182, log10 659 = 2.8189 and log10 661 = 2.8202 Find log10 656 by Lagrange’s interpolation formula [Ans 2.8169]
8 Compute Sin 15° by Lagrange’s Method from the data given below:
: 0.0000 0.50000 0.70711 0.86603 1.0000
x
y
[Ans 0.25859]
9 The percentage of Criminals for different age group are given below:
Apply Lagrange’s formula to find the percentage of criminals under 35 years of age
[Ans 77]