Apply Stirling’s formula to find a polynomial of degree four which takes the values of yas given below: x [Ans.. Using Bessel’s formula find the value of y at x = 3.75 for the data given
Trang 17 Apply Stirling’s formula to find a polynomial of degree four which takes the values of y
as given below:
x
[Ans 2 4 8 2
1
3u −3u + ]
8 Apply Stirling’s formula to interpolate the value of y at x = 1.91 from the following data: x
y
[Ans 6.7531]
4.5 BESSEL’S
Example 1 Using Bessel’s formula find the value of y at x = 3.75 for the data given below:
Sol Difference table for the given data is as:
2.102
1.215
−
−
−
−
Here h = 0.5
∴ u = x a h− =3.75 3.50.5− =0.5
Trang 2Now from Bessel’s formula, we have
1 ( 1)
− −
3 f (–1)
5
( 1) ( 2) ( 1) ( 1)( 2)( 1 2) ( 1) ( 1)( 2)
( 2)
f
18.644 20.225 (0.5 0.5)( 1.581) 1.99 2.37
16 9
0 (0.5 1)(0.5)( 0.5)(2.5) 0
2
+
= 19.407 (Approx.)
Example 2 Following table gives the values of e x for certain equidistant values of x Find the value
of e x at x = 0.644 using Bessel’s formula:
x
x
e
1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.954237
Sol Given h = 0.01, take it origin as 0.64
0.644 0.64 0.004
0.4 0.01 0.01
x a
u
h
u = 0.4
Difference table for the given data is as:
−
−
−
−
( )
0.61 1.840431
0.018497
0.019445 0.67 1.954237
Trang 3Bessel’s formula
1 ( 1)
u u
− −
3 f (–1)
5
1 ( 1)( 2) ( 1) ( 2) ( 1) ( 1)( 2)( 1/2)
( 2)
f
1.896481 1.915541 ( 0.1)(0.01906) 0.4( 0.6) 0.000191 0.000189
−
(0.4)( 0.6)( 0.1)(0.000002) (1.4)(0.4)( 0.6)( 1.6) 0.000001 0.000002
(1.4)(0.4)( 0.6)( 0.1)( 1.6)
( 0.000001) 120
= 1.906011–0.001906 – 0.0000228 + 0.000000008 + 0.000000033 + 1.68 × 10–10
= 1.904082
Example 3 Find the value of y 25 from the following data using Bessel’s formula Data being y 20 =
2854, y 24 = 3162, y 28 = 3544, y 32 = 3992.
Sol The difference table for the data is as:
308
448
−
25 24 0.25
4
(0.25) ( 0.25) 382 (0.25)( 0.75)
= 3353 – 95.5 – 6.5625 – 0.0625
= 3250.875
Trang 4Example 4 The pressure p of wind corresponding to velocity v is given by following data Estimate pressure when v = 25.
v P
Sol The difference table for the given data is as:
−
0.9
3.4
Let origin = 20, h = 10,
25 20 0.5
10
Bessel’s formula for interpolation is:
2
1 ( 1)
u u
− −
1
6.4 0 0.16250 0 2
= 3.2 – 0.16250
P25 = 3.03750
Example 5 Probability distribution function values of a normal distribution are given as follows:
x
p x
( ) 0.39104 0.33322 0.24197 0.14973 0.07895
Find the value of p(x) for x = 1.2.
Sol Taking the origin at 1.0 and h = 0.4
x = a + uh ⇒ 1.2 = 1.0 + u × 0.4
Trang 51.2 1.0 1
The difference table is:
−
−
−
−
−
5782
7078
Bessel‘s formula is
3
1 ( 1)
− −
105f (0.5) =
1 1 1
24197 14973 2 2 2146 99
−
= 19457.0625
∴ f (0.5) = 0.194570625
Hence, p(1.2) = 0.194570625.
Example 6 Given y 0 , y 1 , y 2 , y 3 , y 4 , y 5 (fifth difference constant), prove that
1 2
1 25(c b) 3(a c)
where a = y 0 + y 5 , b = y 1 + y 4 , c = y 2 + y 3
Sol Put u= 12 in bessel’s formula, we get
y = y +y − ∆ y + ∆ y− + ∆ y− + ∆ y−
Shifting origin to 2, we have
2
y = y +y − ∆ y + ∆ y + ∆ y + ∆ y
c
Trang 61 2
c
c
1 2
25( ) 3( )
2 256
c
Example 7 If third differences are constant, prove that
x 2
+ = + − ∆ + ∆ · Sol Put u=12 in Bessel’s formula, we get
2
y = y +y − ∆ y + ∆ y− Shifting the origin to x.
2
x
+ = + − ∆ + ∆
Example 8 Given that:
x
f x
Apply Bessel’s formula to find the value of f(9).
Sol Taking the origin at 8, h = 2,
9 = 8 + 2u or u = 1
2 The difference table is:
15293
10353
−
−
−
−
Trang 7Bessel’s formula is
1
1 ( 1)
u
u u
− −
−
1
4
1/2
y
1/2
10 y =71078.27344
∴ y1/2 =7.107827344
Hence, f(9) = 7.107827344
Example 9 Find a polynomial for the given data using Bessel’s formula f(2) = 7, f(3) = 9, f(4) =
12, f(5) = 16.
Sol Let us take origin as 3 therefore,
u = x – 3
2
4
Bessel’s formula:
u
P P
u u u
+ − × +
=
2
3
u
=
9
2 2
u
u
Trang 8Put u = x – 3
y =
2
( 3) 5
( 3) 9
x
x
2 x − x+ +2 x− +
y = 1 2 1 6
2x −2x+ Ans
PROBLEM SET 4.6
1 Find y (0.543) from the following values of x and y:
x
y x
[Ans 6.303]
2 Apply Bessel’s formula to find the value of y2.73 from the data given below:
2.5 0.4938, 2.6 0.4953, 2.7 0.4965, 2.8 0.4974
2.9 0.4981, 3.0 0.4987
[Ans 0.496798]
3 Find y25 by using Bessel’s interpolation formula from the data:
20 24, 24 32, 28 35, 32 40
[Ans 32.9453125]
4 Apply Bessel’s formula to evaluate y62.5 from the data:
x
x
y
[Ans 7957.1407]
5 Apply Bessel’s formula to obtain the value of f (27.4) from the data:
x
f x
[Ans 3.649678336]
6 Apply Bessel’s formula to find the value of f(12.2) from the following data:
( ) 0 0.19146 0.34634 0.43319 0.47725 0.49379 0.49865
x
f x
[Ans 0.39199981]
Trang 97 Apply Bessel’s interpolation formula, show that tan160° = 0.2867, Given that:
tan 0 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774
x
x
8 Apply Bessel’s formula to find a polynomial of degree 3 from the data:
x y
x
u + u + u+ u= −
]
9 From the following table find the value of f (0.5437) by Gauss and Bessel’s formula:
( ) 0.529244 0.537895 0.546464 0.554939 0.663323 0.571616 0.579816
x
f x
[Ans 0.558052]
10 Apply Bessel’s formula to obtain a polynomial of degree three:
x
f x
[Ans
3
x
4.6 LAPLACE EVERETTS
Example 1 Find the value of f(27.4) from the following table:
u
f x
Sol Here, u = 27.4 27.0 0.4,
1
origin is at 27.0 h = 1
Also, w = 1 – u = 0.6
Trang 10Difference table is:
−
−
−
−
−
−
4
154
115
By Laplace Everett’s formula,
f (0.4) = (1.4)(0.4)( 0.6) (2.4)(1.4 (0.4)( 0.6)( 1.6))
( ) { (1.6)(0.6)( 0.4) (2.6)(1.6)(0.6)( 0.4)( 1.4) }
= 3649.678336
Hence f (27.4) = 3649.678336.
Example 2 Using Laplace Everett’s formula, find f(30), if f(20) = 2854, f(28) = 3162, f(36) = 7088, f(44) = 7984.
Sol Take origin at 28, h = 8
⇒ 28 + 8u = 30 ⇒ u = 0.25
Also, w = 1 – u = 1 – 25 = 0.75