1. Trang chủ
  2. » Công Nghệ Thông Tin

A textbook of Computer Based Numerical and Statiscal Techniques part 22 pps

10 660 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 99,21 KB

Nội dung

Using Gauss backward interpolation formula, find the population for the year 1936.. Given that Year Population in thousands Sol... Find the value of cos 51°421 by Gauss’s backward formul

Trang 1

Example 5 If f(x) is a polynomial of degree four find the value of f(5.8) using Gauss’s backward formula from the following data:

f(4) = 270, f(5) = 648, f(5) = 682, 3 f(4) = 132.

Sol Given ∆f(5) 682=

f (6) – f (5) = 682

f (7) – 3f (6) + 3f (5) – f (4) = 132

f (7) = 3 × 1330 – 3 × 648 + 270 + 132

f (7) = 2448

Now form difference table as:

x f x( ) ∆f x( ) ∆2f x( ) ∆3f x( )

378

1118

Take a = 6, h = 1 a + hu = 5.8

u= −0.2

From Gauss backward formula

u u u

f − = f + ∆ − +u f + ∆ f − + + − ∆ f

=1330 ( 0.2) 682+ − × +( 0.2)(0.8)− 2 ×436+( 0.2)(0.8)( 1.2)− 6 − ×132

= 1330 – 136.4 – 34.88 + 4.224

= 1162.944

Hence f (5.8) = 1162.944.

Trang 2

Example 6 Using Gauss backward interpolation formula, find the population for the year 1936 Given that

Year Population in thousands

Sol Here h = 10 Take origin at 1941 to evaluate population in 1936

1936 1941 5

0.5

x a

u

h

Difference table for given data is as:

3

13

Gauss backward formula is

( ) (0) ( 1) ( 1) 2 ( 1) ( 1) ( 1) 3 ( 2)

4!

u+ u+ u u

5

( 2)( 1) ( 1)( 2)

( 3) 5!

f

= 39 + ( 0.5) 12 ( 0.5)(0.5) 1 ( 0.5)(0.5)( 1.5) ( 4)

= 39 – 6.0 – 0.125 – 0.25

= 32.625 thousands

Hence, the population in 1936 is 32625 thousand

Trang 3

PROBLEM SET 4.4

1 Given that 12500 = 111.803399, 12510 = 111.848111, 12520 = 111.892806, 12530

= 111.937483 Using Gauss’s backward formula show that 12516 = 111.8749301

2 Find the value of cos 51°421 by Gauss’s backward formula from the following data:

x x

[Ans 0.61981013]

3 The population of a town in the years are as follows:

Year Population in thousands

Find the population of the town in 1946 by applying Gauss’s backward formula

[Ans 22898]

4 Interpolate by means of Gauss’s backward formula, the population of a town KOSIKALAN for the year 1974, given that:

Year Population in thousands

[Ans 32.345 thousands appros]

5 Use Gauss interpolation formula to find y41 from the following data:

y30 = 3678.2, y35 = 2995.1, y40 = 2400.1, y45 = 1876.2, y50 = 1416.3

[Ans y41 = 2290.1]

6 Use Gauss’s backward formula to find the value of y when x = 3.75, given the following

table:

x

x

y

[Ans 19.704]

Trang 4

Stirling’s Formula

Example 1 Evaluate sin (0.197) from the table given:

x

sin x

Sol The difference table is given by

0.01974

0.01952

h

= 0.197 0.19

0.02

− = 0.35 From Stirling formula, we have

f(u) = f(0) + ( )0 ( )1

2

u∆f + ∆ −f 

+ 2

2!

u

( )

2f 1

3!

u+ u u

3 ( )1 3 ( )2

2

+ ( 1) (2 1)

3!

u+ u u

( )

4f 2

0.35 0.0196 0.01968

+

(0.35 1 0.35 0.35 1) ( ) ( )

6

× −0.000022  + (0.35)2 ( )2

0.35 1

0.00002 24

×

= 0.18886 + 0.0068741 – 0.0000049 + 0.0000005 – 0.00000009

= 0.19573 (Approx.)

Example 2 Find the value of e x = at x = 0.644 using by Stirling’s formula The following data given below:

x

x

y=e

1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.954237

Trang 5

Sol For the given data difference table is as:

x

3 0.61 1.840431

0.018497

0.019445

3 0.67 1.954237

0.01

x a h

By stirling formula, we get,

3 3

+

2

2

(0.4) (1.4)(0.4)( 0.6)

− +

(0.4) (0.4) 1 24

+ 0.000002 (1.4)(2.4)(0.4)( 0.6)( 1.6) 0.000006 0.000001

2 (0.4 2)(1.4)(0.4)( 0.6)( 0.4 2)

( 0.000007) 720

= 1.896481 + 0.0075862 + 0.00001512–0.000000112 – 0.0000000112 + 0.000000026 – 0.0000002

= 1.904081 (Approx.)

Trang 6

Example 3 Employ Stirling’s formula to evaluate y 12.2 from the data given below

(y x = 1+ log 10 sin x).

5

x y

°

Sol For the given data difference table is as:

10

4093

3159

x

u = 12.2 – 12 = 0.2

From Stirling formula

[ ] 2 0.2 (0.2){ 2 1} (0.2)2{ ( )0.2 2 1}

= 31788 – 714.9 – 6.14 – 1.648 + 0.0208

y12.2 = 32495

105y12.2 = 32495

y12.5 = 0.32495 Ans

Trang 7

Example 4 Apply Stirling’s formula to find a polynomial of degree three which takes the following values of x and y:

x

Sol Let u = 6

2

x

Now, we construct the following difference table:

3

12

Stirling’s formula is

2 2

+

2

4 ( 1) ( 1)

( 2) 3!

u u u

f

u

y = +u + + × + −  + +

3 7 3 2 2( 3 )

2u 2u 3 u u

3 2 3 3 2 7 2

3u 2u 2u 3u

3 2 3 3 2 17

3u 2u 6 u

= + + +

= 0.0833x3 – 1.125x2 + 8.9166x – 19.

Trang 8

Example 5 Apply Stirling’s formula to find the value of f(1.22) from the following table which gives the value of

2

x x 2 0

1

2π

= ∫ dx at intervals of x = 0.5 from x = 0 to 2.

( )

x

f x

Sol Let the origin be at 1 and h = 0.5

x = a + hu, u = 1.22 1.00 0.44

0.5

x a h

Applying Stirling’s formula

2

+

2

4 ( 1) ( 1)

( 2) 3!

u u u

f

f(0.44) = f(0) + (0.44)

2 2

2 ∆f + ∆ − +f 2 ∆ f

= f(0) + (0.22) [f(0) + f(–1)] + 0.0968 ∆2 f(–1)

– 0.029568 [∆3 f(–1) + ∆3f(–2)] – 0.06505∆4 f(–2) .(1)

The difference table is as follows:

191

44

Trang 9

f(0) and the differences are being multiplied by 103

∴ 103 f(0.44) ≈341 + 0.22 × (150 + 92) + 0.0968 × (–58)

– 0.029568 × (–17 + 10) – 0.006505 × 27

≈ 341 + 0.22 × 242 – 0.0968 × 58 + 0.029568 × 7 – 0.006505 × 27

≈ 341 + 53.24 – 5.6144 + 0.206276 – 0.175635

≈ 388.66

f(0.44) = 0.389 at x = 1.22 Ans

Example 6 Use Stirling’s formula to find y 28 given.

y 20 = 49225, y 25 = 48316, y 30 = 47236,

y 35 = 45926, y 40 = 44306

Sol Let the origin be at 30 and h = 5

a + hu = 28

The difference table is as follows:

909

1620

By Stirling’s formula,

2

( 0.4)

1080 1310

(.6)( 4)( 1.4) 3!

+ 59 80 ( ).4 2{( 4.4)2 1}

( 21)

− −

Hence, y28 = 47691.8256

Trang 10

PROBLEM SET 4.5

1 Use Stirling’s formula to find y32 from the following table:

x

y

[Ans 13.062]

2 Use the following table to evaluate tan 16° by Stirling’s formula:

tan

θ°

[Ans 0.2866980499]

3 Use Stirling’s formula to find the value of f(1.22) from the following data:

[Ans 0.9391002]

4 Find f(0.41) using Stirling’s formula if,

x

f x

[Ans 0.15907168]

5 Use Stirling’s formula to find y35, data being:

y20 = 512, y30 = 439, y40 = 346, and y50 = 243,

[Ans 394.6875]

6 From the following table find the value of f(0.5437) by Stirling’s formula:

( ) 0.529244 0.537895 0.546464 0.554939 0.663323 0.571616 0.579816

x

f x

[Ans 0.558052]

Ngày đăng: 04/07/2014, 15:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w