1. Trang chủ
  2. » Công Nghệ Thông Tin

A textbook of Computer Based Numerical and Statiscal Techniques part 15 doc

10 464 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 104,5 KB

Nội dung

126 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Similarly, ∆ n 1 x    = ()()() () ()()() −−− − ++ + 1 2 3 1 2 n xx x x n = () ()()() 1! 12 n n xx x x n − ++ + (2) Similarly, ∆ (ab cx )= a ∆ b cx = a{b c(x + 1) – b cx } = a{b cx b c – b cx } = a(b c –1)b cx . 2 () cx ab ∆ = {} () (1) cx ccx ab a b b ∆∆ = ∆ − = 2 (1) (1) ccxccx ab b ab b −∆ = − Proceeding in the same manner, we get () ncx ab ∆ = a(b c – 1) n b cx . Example 29. If p, q, r and s be the successive entries corresponding to equidistant arguments in a table, show that when third differences are taken into account, the entry corresponding to the argument half way between the arguments of q and r is + 1 AB 24 , where A is the arithmetic mean of q, r and B is the arithmetic mean of 3q – 2p – s and 3r – 2s – p. Sol. On taking h being the interval of differencing the difference table is as: ∆∆ ∆ − +−+ −−+− +−+ − + 23 2 33 22 3 xx x x xu u u u ap qp ah q r qp rq s r qp ahr srq sr ahs The argument half way between the arguments of q and r is 1 2 (a + h + a + 2h) i.e., 3 2 ah+ . Hence, the required entry is given by, u a+(3/2)h = E 3/2 u a = (1 + ∆) 3/2 u a =   +∆+ ∆+ − ∆     23 3311 3111 1 2222! 2223! a u , (Higher order differences being neglected). Therefore u a+(3/2)h = 23 33 1 28 16 aa a a uu u u +∆ +∆ − ∆ = 33 1 ()(2) (33) 28 16 pqp rqp srqp+−+−+− −+− CALCULUS OF FINITE DIFFERENCES 127 = 331 333 33 1 1 2 8 16 2 4 16 8 16 16 pqrs  −++ + −− + + −   = 1991 16 16 16 16 pqrs−++− = 1111 () 16 16 2 16 pqr s  −++ +−   = 11 () ( ) 216 qr qrps++ +−− (1) Again A = arithmetic mean of q and r = 1 () 2 qr+ B = Arithmetic mean of 3q – 2p – s and 3r – 2s – p is = [] () 13 32 32 22 q ps r sp qrsp −−+−−= +−− . ∴ 1 24 AB+ = 1 (). 216 qr qrsp + ++−− Substituting this value in (1), we get u a+(3/2)h = A + 1 24 B. Example 30. Given u 0 , u 1 , u 2 , u 3 , u 4 and u 5 . Assuming that, fifth order differences to be constant. Show that: −+ − =+ 1 2 2 1 25(c b) 3(a c) uc 2 256 . where a = u 0 + u 5 , b = u 1 + u 4 , c = u 2 + u 3 Sol. L.H.S. 1 2 2 u = E 5/2 u 0 = (1 + ∆) 5/2 u 0 = 25 0 55 55555 .1 1234 5 22 22222 1 22! 5! u    −−−−−      +∆+ ∆+ + ∆    = 23 4 5 00 0 0 0 0 515 5 5 3 2 8 16 128 256 uu u u u u+∆ + ∆ + ∆ − ∆ + ∆ = 010 210 3210 515 5 ( ) ( 2 ) ( 3 3 ) 28 16 u uu uuu uuuu+−+ −++ −+−+ 543210 3 ( 5 10 10 5 ) 256 uu u uuu+−+−+− 128 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES = 05 14 23 32575 ()()() 256 256 128 uu uu uu+− ++ + = 32575 256 256 128 abc−+ = 325111 256 256 2 128 ab c  −++   = 3( ) 25( ) 2 256 cac cb−+ − + (R.H.S.) Example 31. Given: u 0 + u 8 = 1.9243, u 1 + u 7 = 1.9590, u 2 + u 6 = 1.9823, u 3 + u 5 = 1.9956. Find u 4 . Sol. Since 8 entries are given, therefore we have ∆ 8 u 0 = 0 i.e. (E – 1) 8 u 0 = 0 i.e. (E 8 – 8 C 1 E 7 + 8 C 2 E 6 – 8 C 3 E 5 + 8 C 4 E 4 – 8 C 5 E 3 + 8 C 6 E 2 – 8 C 7 E 1 + 1)u 0 = 0 i.e. (E 8 – 8E 7 + 28E 6 – 56E 5 + 70E 4 – 56E 3 + 28E 2 – 8E + 1)u 0 = 0 i.e. u 8 – 8u 7 + 28u 6 – 56u 5 + 70u 4 – 56u 3 + 28u 2 – 8u 1 + u 0 = 0 i.e. (u 8 + u 0 ) – 8(u 7 + u 1 ) + 28(u 6 + u 2 ) – 56(u 5 + u 3 ) + 70u 4 = 0 On putting the given values, we get 1.9243 – 8(1.9590) + 28(1.9823) – 56 (1.9956) + 70u 4 = 0 or –69.9969 + 70u 4 = 0 or u 4 = 0.9999557. Example 32. Sum the following series 1 3 + 2 3 + 3 3 + + n 3 using the calculus of finite differences. Sol. Let 1 3 = u 0 , 2 3 = u 1 , 3 3 = u 2 , , u 3 = u n–1 . Therefore sum is given by S = u 0 + u 1 + u 2 + + u n–1 = (1 + E + E 2 + E 3 + + E n–1 )u 0 = 1 1 n E E  −   −  u 0 = () 11 n  +∆ −  ∆   u 0 = 1 ∆ () ()() 23 112 1 1 2! 3! n nn nn n n −−−  +∆+ ∆+ ∆+ +∆−   u 0 = () () () 2 00 12 1 2! 3! nn n nn nu u −− − +∆+ ∆ + We know ∆u 0 = u 1 – u 0 = 2 3 – 1 3 = 7. ∆ 2 u 0 = u 2 – 2u 1 + u 0 = 3 3 –2(2) 3 + 1 3 = 12. Similarly we have obtained ∆ 3 u 0 = 6 and ∆ 4 u 0, ∆ 5 u 0 , are all zero as u r = r 3 is a polynomial of third degree. CALCULUS OF FINITE DIFFERENCES 129 ∴ S = n + () 1 2! nn − (7) + ()() 12 6 nn n −− 12 + ()()() 123 24 nn n n −−− (6) = 2 4 n (n 2 + 2n + 1) = () 2 1 2 nn  +   Example 33. Prove that: ∞∞ ==  ∆∆ =+−+−   ∑∑ 2 2x x x0 x0 11 uu1 2424 u 0 . Sol. Taking right hand side of the given expression = 2 0 11 1 2424 x x u ∞ =  ∆∆ +−+−   ∑ u 0 = 1 2 (u 0 + u 1 + u 2 + u 3 + ) + 1 4 1 1 2 − ∆  +   u 0 = 1 2 (u 0 + Eu 0 ++ E 2 u 0 + E 3 u 0 + ) + 1 4 1 1 2 − ∆  +   u 0 = 1 2 (1 + E + E 2 + E 3 + )u 0 + 1 4 1 1 2 − ∆  +   u 0 = 1 2 (1 – E) –1 u 0 + 1 2 (2 + ∆ ) –1 u 0 = 1 2 (1 – E) –1 u 0 + 1 2 (1 + ∆ ) –1 u 0 = 1 2 [(1 – E) –1 + (1 + E) –1 ]u 0 = 1 2 . 2 [1 + E 2 + E 4 + E 6 + ]u 0 = u 0 + u 2 + u 4 + u 6 + = 2 0 x x u ∞ = ∑ = L.H.S. Example 34. Given that u 0 = 3, u 1 = 12, u 2 = 81, u 3 = 200, u 4 = 100, u 5 = 8. Find the value of ∆ 5 u 0 . Sol. We know ∆ = E – 1, therefore, 5 0 u∆ = (E –1) 5 u 0 = (E 5 – 5E 4 + 10E 3 – 10E 2 + 5E – 1)u 0 = u 5 – 5u 4 + 10u 3 – 10u 2 + 5u 1 – u 0 = 8 – 500 + 2000 – 810 + 60 – 3 = 755. 130 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES PROBLEM SET 3.1 1. Form the forward difference table for given set of data: X:10203040 Y: 1.1 2.0 4.4 7.9 2. Construct the difference table for the given data and hence evaluate 3 (2) f∆ . X:01234 Y: 1.0 1.5 2.2 3.1 4.6 [Ans. 0.4] 3. Find the value of E 2 x 2 when the values of x vary by a constant increment of 2. [Ans. x 2 + 8x + 16] 4. Evaluate E n e x when interval of differencing is [Ans. E n e x = e x+nh ] 5. Evaluate ∆ 3 (1 –x) (1–2x) (1–3x) ; the interval of differencing being unity. [Ans. 3 () 36 fx∆=− ] 6. If f(x) = exp (ax), evaluate () n fx ∆ [Ans. (1) nax ah nax ee e ∆=− ] 7. Evaluate 2 3 x E  ∆   [Ans. 6x] 8. Find the value of 24 2 22 (1) xx aa a  + ∆  −  [Ans. 2224 (1) xx aa a ++ ] 9. Evaluate: (a) cot 2 x ∆ [Ans. –Cosec 2 x+1 ] (b) ∆+sin ( )ha bx [Ans. ++2sin cos ( ) 22 bb hhabx ] (c) tan ax∆ [Ans. sin cos cos ( 1) a ax a x + ] 10. Prove that: (a) 1/2 1 2 E =µ= δ (b) 1/2 1/2 1 () EE E −− δ+ =∆+∆ (c) 1/2 1/2 (1 ) (1 ) −− δ=∇ −∇ =∆ +∆ (d) 1/2 1/2 EE − δ=∆ =∇ (e) 2 ∇∆ = ∆∇ = δ (f) 11 1 1 EE E −− − ∇=∆ = ∆= − 11. Show that: (a) sin cot( ) sin( ) sin( ) b abx abx abbx − ∆+= +++ (b) (( ) sin( ) (2sin ) sin( 22 n n bnb abx abx +π ∆+= ++ (c) () cos( ) (2 sin ) cos( 22 n n bnb abx abx +π ∆+= ++ CALCULUS OF FINITE DIFFERENCES 131 12. What is the difference between 2 E ∆    u x and 2 2 x x u Eu  ∆    . If u x = x 3 and the interval of differencing is unity. Find out the expression for both. [Ans. 6h 2 (3x – h), 23 3 66 (2) xh h xh + + ] 13. If f(x) = e ax , show that f(0) and its leading differences form a geometrical progression. 14. A third degree polynomial passes through the points (0, –1), (1, 1), (2, 1) and (3, 2). Find the polynomial. [Ans. 32 1 (3166) 6 xx x−+−+ ] 15. Prove that ∆ sin –1 x = 22 [( 1) 1 1 ( 1) ] xxxx +−−−+ . 3.5 FUNDAMENTAL THEOREM ON DIFFERENCES OF POLYNOMIAL Statement: If f(x) be the nth degree polynomial in x, then the n th difference of f(x) is constant and ∆ n+1 f(x) and all higher differences are zero when the values of the independent variables are at equal interval. Proof: Consider the polynomial f(x) = a 0 + a 1 x + a 2 x 2 + + a n x n (1) Where n is a positive integer and a 0 , a 1 , a 2 , a n are constants. We know ∆f(x)= f(x + h) – f(x). On applying the operator ∆ on equation (1), we get ∆f(x)= ∆(a 0 + a 1 x + a 2 x 2 + + a n x n ) ⇒ f(x + h) – f(x)= [a 0 + a 1 (x + h) + a 2 (x + h) 2 + + a n (x + h) n ] –[a 0 + a 1 x + a 2 x 2 + +a n x n ] 22 33 12 3 [( ) ] [( ) ] [( ) ] nn n ahaxhxaxhx axhx ⇒+ +−+ +−+ + +− ⇒ a 1 b + a 2 [ 2 C 1 xh + h 2 ] + a 3 [ 1 2 323 23 1 2 12 1 ] [ ] n nn nCx nn nn Cxh Cxh h a Cx h h Ch − − ++++ + + 221 12 3 1 nn nn bbxbx bx nahx −− − ⇒+ + + + + (2) where b 1 , b 2 , b n–1 are constant coefficients. According to equation (2), we have the first difference of equation (1) is again a polynomial of degree n – 1. From this we say that ∆f(x) is one degree less than the degree of original polynomial. Again, on taking a difference of equation (2) i.e. second difference of equation (1), we get 2222 23 4 ( ) ( 1) n n fx C Cx Cx nn hax − ∆=++++− …(3) This is a polynomial of degree n – 2. Thus, on continuing this process up to nth difference we get a polynomial of degree zero. Such that: () n fx ∆ = ( 1)( 2) 1. nnn n nn n h ax − −− = 0 ! n n nhax = ! n n nha 132 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Hence, we have nth difference of the polynomial is constant and so all higher differences are each zero. i.e. 12 () () 0 nn fx fx ++ ∆=∆== 3.6 ESTIMATION OF ERROR BY DIFFERENCE TABLE Let y 0 , y 1 , y 2 , y n be the exact values of a function y = f(x) corresponding to arguments x 0 , x 1 , x 2 , , x n . Now to determine error in such a case and to correct the functional values, let an error δ is made in entering the value of y 3 in the table so that erroneous value of y 3 is y 3 + δ. 2 00 11 0 2 22 1 0 2 33 2 1 2 44 3 2 2 55 4 3 4 66 5 2 xy y y xy xy y xy y y xy y y xy y y xy y y y xy y ∆∆ ∆ ∆∆ +δ ∆ +δ ∆ +δ ∆−δ ∆ −δ ∆∆+δ ∆ ∆ From the above difference table we noted that: 1. The error in column y affects two entries in column ∆y, three entries in column ∆ 2 y and so on. i.e. the error spreads in triangular form. 2. The error increases with the order of differences. 3. The coefficients of δ’s are binomial coefficients with alternative signs +, –, 4. In various difference columns of the above table the algebraic sum of the errors is zero., 5. The errors in the column ∆ i y are given by the coefficients of the binomial expansion (1 –δ) i . 6. In even differences columns of ∆ 2 y, ∆ 4 y, , the maximum error occurs in a horizontal line in which incorrct value of y lies. 7. In odd difference columns of ∆ 1 y, ∆ 3 y, , the maximum error lies in the two middle terms and the incorrect value of y lies between these two middle terms. Example 1. Find the error and correct the wrong figure in the following functional values: Sol. 1234567 2 5 10 18 26 37 50 x y CALCULUS OF FINITE DIFFERENCES 133 ∆∆ ∆ − − 23 12 3 25 2 51 310 3 83 418 0 83 526 3 11 1 637 2 13 750 xy y y y Here the sum of all the third differences is zero and the adjacent values –3, 3 are equal in magnitude. Also horizontal line between –3 and 3 points out the incorrect functional value 18. Therefore coefficient of first middle term on expansion of (1 – p) 3 = –3 ⇒ –3e = –3 ⇒ e = 1 ∴ Correct functional value = 18 – 1 = 17. Example 2. Find and correct by means of differences the error in the following table: 20736, 28561, 38416, 50625, 65540, 83521, 104976, 130321, 160000 Sol. For the given data we form the following difference table: ∆∆∆∆∆ − − 2345 20736 7825 28561 2030 9855 324 38416 2354 28 12209 352 20 50625 2706 8 14915 360 40 65540 3066 48 17981 408 40 83521 3474 8 21455 416 20 104976 3890 28 25345 444 130321 4334 29679 160000 y y y yyy → ← 134 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES From this table we have the third differences are quite iregular and the irregularity starts around the horizontal line corresponding to the value y = 65540. Since the algebraic sum of the fifth differences is 0, therefore –5ε = –20 ⇒ ε = 4. Therefore the true value of y 5 = 65540 – 4 = 65536. Example 3. Locate the error in following entries and correct it. 1.203, 1.424, 1.681, 1.992, 2.379, 2.848, 3.429, 4.136 Sol. Difference table for given data is as follows: ∆∆ ∆ ∆ − − 3 3 32 33 34 10 10 10 10 10 1203 221 1424 36 257 18 1681 54 4 311 22 1992 76 16 387 6 2379 82 24 469 30 2848 112 16 581 14 3429 126 707 4136 yy y y y Sum of all values in column of fourth difference is –0.004 which is very small as compared to sum of values in other columns. ∴∆ 4 y = 0 Errors in this column are e, –4e, 6e, –4e and e. Term of Maximum value = 24 ⇒ 6e = 24 ⇒ e = 4. Error lies in 2379. Hence, required correct entry = 2379 – 4 = 2375. Hence, correct value = 2.375 → ← CALCULUS OF FINITE DIFFERENCES 135 Example 4. One number in the following is misprint. Correct it. 1 2 4 8 16 26 42 64 93. Sol. Difference table for given data it as follows: ∆∆∆∆∆ − − − − − 2345 11 1 22 1 21 34 2 1 42 5 48 4 4 8210 516 2 6 10 4 10 626 6 4 16 0 5 742 6 1 22 1 864 7 29 993 xyyyyyy In the above table, the fourth difference column have algebraic sum of all the values is 0. The middle term of this difference column is 6. ∴ 6e = 6 or e = 1. ∴ Correct value is given by 16 – 1 = 15. Example 5. Locate the error in the following table: 1234567891011 1.0000 1.5191 2.0736 2.6611 3.2816 3.9375 4.6363 5.3771 6.1776 7.0471 8.0000 x y . are taken into account, the entry corresponding to the argument half way between the arguments of q and r is + 1 AB 24 , where A is the arithmetic mean of q, r and B is the arithmetic mean of. ax − −− = 0 ! n n nhax = ! n n nha 132 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Hence, we have nth difference of the polynomial is constant and so all higher differences are each zero. i.e. 12 (). yyy → ← 134 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES From this table we have the third differences are quite iregular and the irregularity starts around the horizontal line corresponding

Ngày đăng: 04/07/2014, 15:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w