1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

An Encyclopedia of the History of Technology part 94 pptx

10 338 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 10
Dung lượng 155,94 KB

Nội dung

PART FIVE: TECHNOLOGY AND SOCIETY 912 (1780, wax-tipped with phosphorus) which was carried on the person sealed in a little glass tube; when the tube was carefully broken it would ignite on contact with the air. The phosphorus box (1786) was first made in Paris as le briquet phosphorique. It contained sulphur matches, a bottle coated internally with phosphorus and a cork. Friction was required for ignition. More dangerous still was the chlorate match (also known as an acid-dip match), the head of which was tipped with a mixture of chlorate of potash, sugar and gum arabic. For ignition the head had to be dipped in vitriol (sulphuric acid). The equipment for this type of ignition was enclosed in a small container called an instantaneous light box. Henry Bell’s partly mechanized version of 1824 was little safer, especially when operated by an awakened sleeper on a dark morning. A number of patents followed in the early nineteenth century. There were John Walker’s friction lights of 1827, then Samuel Jones’s Promethean match of 1828 and his lucifer of 1831. Then came the yellow phosphorus-tipped matches which ignited more readily, sometimes too readily, causing accidents. Yellow phosphorus also caused the terrible condition of ‘phossy jaw’ suffered by match factory workers when it entered their bodies via defective teeth. Professor Anton von Schrotter’s discovery of amorphous red phosphorus in 1845 led to the development of the safety match, credited to John Lundstrom of Sweden in 1855. In this he divided the chemical constituents between the match head and the striking surface on the box, so markedly reducing the chances of spontaneous combustion. Lighting A level of artificial illumination which enables people to continue their domestic activities as well during the hours of darkness as during those of daylight is a very recent boon, applicable only to the twentieth century. Before the 1830s the only artificial light came from candles and oil lamps and the level of illumination was exceedingly low. Constant attention had to be given to trimming wicks and the burning fat dripped and produced a smoky, smelly atmosphere. The cheapest form of domestic illumination was the home-made rushlight produced by repeatedly dipping a dried, peeled rush into tallow (derived from animal fat) which had been melted in a greasepan. Candles were also generally home-made from tallow poured into moulds into which the wicks had first been inserted. Beeswax candles burned brighter, needed less attention and smoked less, but were costly and subject to tax. With the expansion of the fishing industry in the late eighteenth century sperm whale oil began to be used to make candles and, when in the following THE DOMESTIC INTERIOR 913 century, paraf fin wax was produced from petroleum, a blend of the two materials gave a greatly improved flame. The later stearine candle owed much to the work on the chemical nature of fats by the French chemist Michel Eugène Chevreul; it was a firmer candle and gave a brighter light without the accompanying acrid odour. The use of simple oil lamps made of earthenware or metal dates from very early times. These were containers for the fuel, which derived from various sources—olive oil, animal or vegetable oils, rape seed (colza), oil from kale, whale oil and paraffin—and for a floating wick; this needed frequent adjustment and trimming. The first significant contribution towards improving the illumination of the oil lamp came in 1784 with the Argand design (Figure 19.1); up to this time the illumination level was only one candlepower per wick. Ami Argand, the Swiss chemist, devised a tubular wick which was a hollow cylinder enclosed in a glass chimney. The resulting current of air so improved combustion that the light from a single wick could be increased up to ten times. This lamp was Figure 19.1: Colza oil-burning Argand reading lamp. The burner is fed by oil flowing under gravity from the reservoir above the level of the wick. The oil level in the reservoir is controlled by a float valve which closes the filling hole. PART FIVE: TECHNOLOGY AND SOCIETY 914 then further improved by replacing the existing gravity feed fuel container by one with a mechanical pump. The Frenchman Carcel produced one such design in 1800 and this was followed by that of another Frenchman, Franchot’s simpler Moderator lamp in 1836. Twentieth-century paraffin oil lamps give a much brighter light because the fuel is vaporized before it reaches the flame, so less energy is wasted. Twenty-six miles of gas mains had been laid in London by 1816 and soon gas illumination of the streets and public buildings was acclaimed a great success. Domestic consumers were less satisfied. The mid-century standard batswing or fishtail burner flickered and smoked; it contained sulphur compounds which emitted an unpleasant smell and the fumes damaged furnishings and dirtied the interior decoration. The refinement of the gas mantle revolutionized gas illumination. It gave a much better light and did away with much of the dirt and smell. Attempts to make a satisfactory mantle had begun by 1840 but until the invention of the Bunsen burner in 1855 it had not proved possible to produce a gas flame of high enough temperature. In the Bunsen burner air was mixed with the gas before ignition, so giving a hotter flame. The incandescent gas mantle was devised by the Austrian Carl Auer von Welsbach in 1886. In it he was making use of the principle that when the temperature of a substance is raised sufficiently it begins to glow and so emits more of its energy in the form of light. His mantle was made of knitted cotton impregnated with solutions of rare earth oxides (he found that the best mixture proved to be 99 per cent thorium oxide and one per cent cerium oxide). When the cotton mantle had burned away, the skeleton of the material retained its form. The first Welsbach mantle was manufactured in 1887 and improved versions followed including the inverted mantle of 1903. The arc lamp, its principle based upon the voltaic pile, was the earliest form of electrical illumination. This could not be developed until the invention of Gramme’s ring dynamo (1871) (see p. 360) but soon afterwards arc lighting was being installed for use in the streets, factories and railway stations. But the arc lamp was totally unsuitable for domestic illumination; the light was too dazzling, it was too costly, it was difficult to adjust (see p. 362ff.). Electric lighting in the home had to await the incandescent filament lamp. The concept had been understood from before W.E.Staite’s first demonstration in Sunderland in 1847, but there were three difficult problems which had to be solved before a satisfactory lamp could be manufactured. The principle was the same as for the incandescent gas mantle, but for the electric counterpart it was very difficult to produce a filament sufficiently durable to survive the high temperatures; the technology available made it almost impossible to evacuate sufficient air from the lamp bulb; and it was even more of a problem to provide a satisfactory seal for the wires carrying the electric current where they passed into the bulb. THE DOMESTIC INTERIOR 915 A successful carbon filament lamp was produced almost simultaneously in the USA and in England, by Thomas Alva Edison in America (1879) and Joseph Wilson Swan in England (1878 or 9) (see p. 365ff.). Both were manufactured, at first in competition; later the firms were merged to become Edison and Swan United Electrical Company. The carbon filament lamp dominated the market until about 1910. Meanwhile, better metal filaments were being devised: osmium (1902), tantalum and then tungsten (1906). The tungsten filament with its high melting point of 3410°C was very durable, but the high temperatures blackened the inside of the bulb. The research carried out at the General Electric laboratories in the USA under the American chemist Irving Langmuir led, in 1913, to the development of the argon-filled incandescent lamp with coiled-coil filament. Today’s electric lamp gives about four times as much light as a carbon filament lamp for the same consumption of electricity. Later improvements include interior frosting of the bulb and the introduction of a fuse to avoid explosion of the lamp if a filament burns out. The fluorescent lamp, introduced in the 1930s, was developed from the mercury vapour discharge lamp of the type in use for street lighting. It has become popular in the home in more modern times especially for bathroom and kitchen use. The lamps are coated on the inside with several different phosphorescent compounds (phosphors). The ultra-violet light which is produced by the discharge of electricity through the mercury vapour in the tube is absorbed by the phosphors which emit light. The colour of such lamps can be altered by using different types of phosphors. Fluorescent lamps use little electrical power and the tubes last much longer than the equivalent filament lamps. Heating Until the beginning of the seventeenth century most rooms were heated by wood burning on the open hearth. The hearth surface was of brick or stone and the logs were supported on this by andirons. Alternative fuels were peat, turves or heather. Supplementary heating was provided by charcoal burned in portable metal braziers. Soon after 1600, depletion of Britain’s forest stock, used in profligate quantity without adequate replanting for hundreds of years for shipbuilding, charcoal-burning, glass-making and general building, became so serious that various forms of legislation were passed by Parliament restricting from this time onwards indiscriminate felling of certain woods. Gradually coal began to replace timber as the normal domestic fuel, though this was a slow process and many households, particularly in rural areas, continued to burn permitted and dead woods until the early nineteenth century. PART FIVE: TECHNOLOGY AND SOCIETY 916 This changeover to coal as a domestic heating fuel marked the end of the traditional open hearth design. It is difficult to kindle and burn coal on a flat hearth, as a draught is needed under the fire; also andirons, which satisfactorily support logs, are not suited to containing lumps of coal. A metal basket was devised to hold the fuel which had bars in front and a slatted base below; the basket was attached at the sides to andirons similar to those previously in use and this raised the basket on legs above the floor of the hearth. Such grates, in general use by the later seventeenth century, were called dog grates. The name derives from the alternative term for andiron which was firedog, referring to the shape of the leg which resembled the hind leg of a dog. The next stage was the basket grate in which the fireback was also incorporated into the design. The beautiful eighteenth-century grates of polished steel and brass, such as those which Robert Adam designed, were of this type. As time passed less wasteful though much less beautiful fireplaces were produced. The chimney draught was more carefully controlled by reduction of the fire-basket area, as in the hob grate, for example. A smoke canopy was fitted, also a chimney register; this was a metal plate which could be slid across the flue opening to adjust the air intake. With the contraction of the fireplace opening, the chimney flues became narrower also, leading to the iniquitous practice of employing small boys to climb inside the flues to sweep them as these were no longer wide enough for men to enter: this practice only ended in 1875 The modern open fire burns smokeless fuel; convection heating and provision of hot water may be incorporated. Gas or electric lighting devices are usually fitted. The free-standing solid fuel stove is an alternative. Nineteenth- century versions of these were ornate designs in cast iron; their modern counterparts are usually finished with coloured glazed enamel. Paraffin heating stoves became available in the 1860s. Their use was chiefly in rural areas where gas (and later electricity) were very late in coming. Nineteenth-century examples, made of ornamental cast iron, were primitive and odorous; they were markedly inefficient. The Valor Oil Stove of the 1920s was a great improvement; in this type a brass vessel contained the paraffin. The circular wick in its holder stood upon this removable container. After the invention of the Bunsen burner many attempts were made to design a gas fire on the radiant principle in which a gas flame would heat a material to incandescence. The difficulty was to find such a material: fire-bricks, woven wire, pumice balls were all experimented with. Success was finally achieved with asbestos tufts fixed into firebrick and gas fires began to be sold in considerable numbers from 1882. Fire-clay radiants were then introduced, the familiar columnar ones in 1905. In the early twentieth century the idea of convector gas radiators was revived; the Embassy design of 1920 was a notable example. The present-day version of such heaters became available from the 1950s. The use of electricity for heating lagged behind its adoption for lighting. In Britain the earliest heaters put on sale were the 1894 designs of Crompton & THE DOMESTIC INTERIOR 917 Co. They consisted of cast-iron radiant panels in which the heating wires were embedded in enamel. They were not very successful because of breakages due to the differing thermal expansions of the iron and the enamel. A different type of heater was then devised by Dowsing of Crompton, Manchester, in which he used two or four large sausage-shaped carbon filament bulbs. Despite a reflector backing, these gave out little heat. It was A.L.Marsh’s work on the resistance wire made from nickel-chrome alloy (1906) and, later, the element devised by C.R.Belling in which the wire was coiled round fire-clay formers, which revolutionized electric fire design. Despite this, it was some time (after 1930) before electric heating competed with gas and solid fuel in the home, partly because many households were not yet wired for electricity and partly due to its higher cost. A scheme to exploit off-peak electricity, in heaters containing concrete blocks which would retain heat when switched off in the intervening hours, was begun in the 1930s; its success was then minimal. In the 1960s the more efficient storage heaters, which then contained bricks and a fan to maintain a flow of air through the heater, brought a better response but it is the modern, much improved slim-line heater which has been most successful. It is well known that the ancient Romans employed a method of central heating by hypocaust; all over Europe remains of such systems have been excavated, showing their use for all types of buildings including homes. This is a heating method whereby hot air from a basement furnace is passed under the floor and through wall flues to heat all the rooms of a dwelling. The hypocaust was the underfloor chamber, the term deriving from two Greek words meaning ‘the place heated from below’. With the collapse of the Roman Empire in the west the hypocaust idea in this part of Europe fell into disuse and it was many centuries before central heating systems were once again devised. Several methods were developed in the eighteenth and nineteenth centuries to use steam for this purpose in factories and other large buildings. Domestic central heating in Britain is very much a feature of post-1945 building, although in Europe and North America, because of much colder winter weather, schemes were given more urgent priority. WASHING, BATHING AND TOILET FACILITIES The marked reluctance to wash or bathe the person more often than was absolutely necessary which pertained in Europe in the centuries before about 1850 stemmed chiefly from the problems of heating sufficient water and its disposal and the unreliability of the domestic water supply. Similarly, the inadequacy of sewage disposal facilities made the evacuation of the waste products of the human body, at best, an uncomfortable, unhygienic and malodorous proceeding and, at worst, a dangerous hazard to health and even life. PART FIVE: TECHNOLOGY AND SOCIETY 918 Under the administration of the Roman Empire there had been adequate supplies of fresh water for washing and for sanitation purposes and heating of water by the hypocaust method. The majority of town dwellers in European countries ruled by Imperial Rome lived in flats (cenacula) in apartment blocks (insulae). These flats were mostly overcrowded and lacked amenities, so it was customary for people to use the public baths (thermae, from the Greek thermos = hot). These great bathing establishments provided free, or at least very cheap, facilities for the population to attend daily to bathe, relax, chat, carry out business, receive massage and medical treatment, eat and drink, take part in sports or be entertained as they so desired. More well-to-do citizens living in a house (domus) would have water laid on in their homes, a means of heating and disposal of it and adequate bathing facilities. This would apply even more to inhabitants of the country house (villa). The Romans attached great importance to an adequate water supply. All over Europe they built great aqueducts to bring the water from the mountain and hill regions to the cities on the plains. In the capital city of Rome, for example, eleven great aqueducts carried the water for miles across the Campagna to supply the daily consumption of 1615 million litres (355 million UK gallons, 427 million US gallons). Vitruvius, the first century BC architect and engineer, gives the desirable rate of fall in building an aqueduct as I50mm per 30.4m (6in per 100ft) and large detours were made to avoid sudden descents. To the Romans, using the latrine was a communal, even social, activity and communities were provided with public (or private in larger houses) sanitary latrines, well equipped with running water and washing facilities. This can be seen in many parts of the Empire as at, for example, Ostia Antica, the port of Rome, where public toilets in the forum baths survive with twenty marble seats, washing facilities and fittings for revolving doors. Remains of rows of toilet seats also survive at the military fort on Hadrian’s Wall at Housesteads, beneath which is a channel for perpetually running water. Washing and bathing After the collapse of the western part of the Roman Empire, the medieval monasteries maintained a fair standard of bodily cleanliness. Cold water was provided in basins or troughs for daily washing and warmed for less frequent bathing; this had to be carried to wooden bathtubs in ewers. From about 1530 until the mid-nineteenth century personal cleanliness lapsed to a very low level, mainly due to a lack of domestic facilities. People washed in the kitchen or in their bedrooms. Whatever the class of household, water had to be carried into the house from an outside pump and heated in a cauldron over the kitchen fire. Wealthier people, who employed servants to carry out these THE DOMESTIC INTERIOR 919 tasks, bathed in the privacy of their bedrooms in wooden or metal tubs. The poorer section of the population bathed in front of the kitchen fire. The water supply was intermittent until about the mid-eighteenth century. The introduction of the ball valve at this time helped, as it meant that the main house tap did not need to be constantly turned on and off. At the same time fashionable furniture designers were making purpose-built pieces for bedroom use such as washbasin stands and toilet tables which were fitted with shaving mirrors and spaces for toilet articles. From about 1850 onwards technical advances began to give much improved facilities. Running water was supplied, at first to the ground floor, only later to bedrooms. Washbasins with taps were fitted to the walls. With better water supplies many different designs of bath appeared on the market. Chief of these were the full-length lounge bath, the sitz-bath, where the bather washed the bottom half of the body retaining (for warmth) his clothes on the top half, the hip bath for washing legs and feet only and the slipper or boot bath. This metal bath was very sensible. It was shaped like a boot and in it the water kept hot and only the bather’s head and shoulders were exposed; the bath could be topped up with hot water as needed. There were also shower baths fitted with curtains and a tank of water above which was operated by a hand-pump. Heated baths, using charcoal or gas for fuel, were expensive but became popular in well-to-do households where baths were fitted with taps connected to a cold water supply. The usual charcoal heater was a vessel containing the fuel which was put into the bottom of the bath and then ignited. Two breathing tubes were attached to the vessel to enable the air to circulate and the fuel to burn well. When the heater was alight the bath was filled with cold water. The fuel continued to burn, since the tops of the tubes remained above water level. There were two chief types of gas heater. One was portable; it was connected to a gas lighting bracket and, like the charcoal heater, was placed in the cold water. The other, a more popular design, was fitted to the exterior of one end of the bath. A gas burner was swung out to be lighted and then swung back so that the flames played directly on to the underside of the bath (for example, see Figure 19.2). Such devices were advertised to heat a bathful of water in six minutes. They also carried a warning to turn the gas off before entering the bath. From the 1880s bathrooms were designed in new houses; these contained a bath, often with shower fitting, a bidet and washbasin. Soon after 1900 the more expensive porcelain-enamel finished bath began to replace the painted cast iron one. In more modern times this has given way to the plastic bath. Apart from the few heated baths hot water for bathing continued to be a luxury until the satisfactory development of the gas geyser. Until the late nineteenth century water was still heated over the kitchen fire and carried PART FIVE: TECHNOLOGY AND SOCIETY 920 upstairs in jugs. A gas geyser had been invented in 1868 by Benjamin Waddy Maughan, taking the name from the Icelandic word geysir = a gusher or hot spring. But for a long time gas geysers were hazardous to operate. There were no pilot jets, the water supply was unreliable and bathrooms were ill ventilated. Even well into the twentieth century, unless the user carefully followed the lighting instructions, an explosion could result. It was in the inter-war years that safety devices were fully incorporated into geyser design, after which the gas geyser became a common item of household equipment. Electric instantaneous water heaters were marketed from the 1920s and by 1930 immersion heaters were being installed in lagged hot water tanks but for some time these were much less numerous than gas geysers as electric heating was more costly. Figure 19.2: Gas heated bath by G.Shrewsbury, 1871. Note swinging bunsen burner at one end, no flue fitted. Advertisements for this type of bath read ‘By the use of the above, a hot bath can be obtained in six minutes for less than 2d. Every family should provide itself with this invaluable requisite, its limited cost placing it within the means of all and its simplicity within the management of a child.’ THE DOMESTIC INTERIOR 921 Sanitation and toilet facilities During the Middle Ages monastic houses had their necessarium built near or over a water supply; these facilities, like the Roman ones, were communal. Public latrines were provided in towns; London Bridge had a large latrine which served over 100 houses. In castles and manor houses the garderobe was built into the thickness of the great walls and drained into the moat. The exits to these conveniences can still be seen in the exterior walls of the White Tower at the Tower of London. Between about 1500 and 1750 sanitary arrangements deteriorated and the close stool and chamber pot largely replaced the garderobe. The close stool, used in well-to-do homes where it would be emptied and cleaned by servants, was a bowl inside a padded, lidded box. Elaborate examples had arms so they were like chairs to sit upon. Pots were emptied into the street. A large house might be equipped with a ‘house-of-easement’, sited in a courtyard or basement and accommodating two or more people. In the eighteenth century sewage disposal was still primitive and insanitary. The usual method was a privy or closet outside the back of a house; in poorer quarters one privy served many houses. These privies had wooden seats and were built over small pits. They had to be emptied by buckets, which were then carried through the house to larger communal cesspools and these were emptied regularly by night-soil men. In many cases the pits drained through into the drinking water supply, with serious results. Indoors, chamber pots were used. These were often concealed in pieces of furniture, for instance, in the dining-room sideboard for the relief of gentlemen after the withdrawal of the ladies after a meal and, in the bedroom, in a night table or night-commode. The invention which finally abolished the malodorous germ-ridden forms of privy was that of the water closet. The original inventor of this was Sir John Harington, a godson of Queen Elizabeth I, who constructed a valve closet in 1596 at Kelston near Bath. It had a pan with a seat and a cistern above. Harington described his invention in his Metamorphosis of Ajax: A Cloacinean Satire. (‘Jakes’ was current slang for a privy.) Unfortunately, owing to the lack of good and reliable water supplies and drainage systems, 179 years were to pass before the first WC was patented by a London watchmaker, Alexander Cumming. This also was a valve closet with overhead cistern; when a handle was pulled up, the valve opened to empty the contents of the pan into a waste pipe and water entered to flush the pan. This was the principle common to subsequent WCs, but its sliding valve was inefficient and remained unsatisfactory until, three years later in 1778, Joseph Bramah improved the valve and so produced a WC which was the best standard pattern for a hundred years. Despite the great improvement which Bramah’s closet represented, only comparatively few houses were fitted with valve closets and more common, at . enamel. They were not very successful because of breakages due to the differing thermal expansions of the iron and the enamel. A different type of heater was then devised by Dowsing of Crompton, Manchester,. was built into the thickness of the great walls and drained into the moat. The exits to these conveniences can still be seen in the exterior walls of the White Tower at the Tower of London. Between. from the problems of heating sufficient water and its disposal and the unreliability of the domestic water supply. Similarly, the inadequacy of sewage disposal facilities made the evacuation of the

Ngày đăng: 04/07/2014, 01:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN