PART FIVE: TECHNOLOGY AND SOCIETY 802 on a settled agriculture is traditionally called the Neolithic Revolution, but the change was hardly sudden, and it is in fact difficult if not impossible to identify any critical date at about which the change occurred. The second point to be identified was shortly after the Industrial Revolution and, to give the farming industry comparable status, the term Agricultural Revolution was applied to the period in the later nineteenth century when mechanization of both farmyard and field operations was becoming normal practice. But if a revolution did occur it was considerably before this time, and it did not involve machinery. For example, in the United Kingdom between 1701 and 1801 the population increased from about 9.4 million to 15.7 million. Although a certain amount of food imports did occur over this period, these people were in effect fed by British farmers. This achievement was accomplished by changes in rotations, selective breeding of plants and animals, and increasing awareness of the biological and chemical principles involved in agriculture, and the application of techniques based on this awareness. It was also a period when scientific experimentation was being applied, and in this the period is not dissimilar to the latest revolution, which has occurred since the Second World War. It is in the laboratory that the chemicals for fertilizers and sprays are developed, and here also breeding experiments have produced the multiple increases in crop yields. On the experimental stations animal breeding, and particularly veterinary techniques such as artificial insemination and embryo transplants, have been developed. The skill of the farmer is still of the utmost importance in the application of these advances, since only with good husbandry can they be fully realized. The skill and inherent knowledge of the farmer are of particular importance in those economies that can least afford the benefits of the laboratory that are dependent on oil for their implementation. It is likely that the laboratory will produce further startling increases in production potential, but research of this sort can only be afforded by those who produce more than sufficient to meet their needs. These nations have produced the technology which has the potential to feed the world’s population, but the technology to achieve the necessary distribution economically has yet to be realized. 803 17 TEXTILES AND CLOTHING RICHARD HILLS INTRODUCTION Whether we are attracted to the recent idea of man as a ‘naked ape’ or to the more picturesque scene of Adam and Eve in the Garden of Eden suddenly becoming aware of their nakedness, it is evident that the human race, alone among animals, has needed some form of clothing to act as protection from both the heat of the summer sun and the cold of winter. While birds are endowed with bright feathers to differentiate and attract the opposite sex, humans very quickly started to improve their appearance by decorating their apparel, so that the tale of textile invention has become linked with fabrics which show colour and beauty as well as mere functionalism. It is this story of luxury linked with necessity that adds another dimension to textile history when compared with the development of some other technologies. Animal skins probably provided the earliest clothing worn by man, at first untreated and then in the form of leather. Strictly, leather is the middle layer of the skin, without the epidermis on the outside, to which the hair or wool is attached, or the inner layer of fat and flesh below. Both these must be scraped off. Smoking may have been one early method of curing leather to prevent it developing an unpleasant smell, but a dried skin becomes hard unless it is treated with fats or oils. The most important curing method uses tannin and the skins are soaked in pits before being impregnated with grease and oil. Leather used to play a more important role in the domestic economy than it does today. Not only were clothes, gloves and shoes made from it, but so were buckets, bottles for liquids, leather hosepipes, as well as book bindings. Leather began to be used for upholstery and wall coverings in the seventeenth century and of course there were also leather balls for games. Because no two skins are alike, and will vary in size, shape and thickness, PART FIVE: TECHNOLOGY AND SOCIETY 804 tanning and curing leather has remained very much a hand craft and has been difficult to mechanize. TEXTILE FIBRES Textiles are created from a mass of fibres processed in a variety of ways. The average length (staple length) of the individual fibres determines how they are to be spun. Cotton fibres have the shortest staple length of those commonly used, at a minimum of 3.8cm (1 1/2in), while linen is around 25cm (10in). Manmade fibres which imitate natural ones are manufactured in continuous lengths and later cut up into staple lengths similar to their natural counterparts. In spinning, the fibres must be locked together by being twisted around each other to form a yarn. A yarn is a single strand of twisted fibres which, by itself, would unwind or coil up into snarls. More turns, or twist, give a harder, stronger yarn than one with fewer. For sewing or knitting by hand, the yarn is doubled with at least one other to make a thread which will not unravel. In the cotton industry, the thickness, or count, of the yarn was determined by length, how many lengths of 840 yards (768m) weighed one pound (454g), so the finer the yarn, the higher the count. From these basic fibres is made the wide range of fabrics and garments available today. A hat, for example, may be made of felt, a type of fabric which may have been one of the earliest made by man. An overcoat will, most likely, have been woven from wool clipped off sheep. The heavy cloth will need fulling or milling to make it compact and, in addition, may have been raised and sheared to give it a smooth finish. The linings of the sleeves, back and pockets will be totally different cloth, today mostly based on man-made fibres. A raincoat will have cloth with cotton fibres that will then have been waterproofed. Such garments are often called ‘mackintoshes’ after the person who first perfected a waterproofing process (see p. 849). Underneath these outer garments, suits for either men or women may have been made from wool treated in one way to give worsted cloth (named for a small village to the north of Norwich) or in another to give woollen tweed. Denim trousers are made from a tough, tightly woven cloth, but the same cotton fibres could have been spun and woven in a different way for making into softer shirts or knitting into underwear. Again, cotton fibres may be subjected to different finishing processes, of which mercerization, to give a sheen, was one of the earliest (see p. 849). Weaving elastic webbing is a specialized skill, and so is making lace. Shoelaces may well have been produced on a braiding machine, while a narrow fabric loom can weave ribbons or the labels sewn inside a garment to show who produced it and how it should be washed. Women’s stockings and tights (whether made of silk or nylon) have to be shaped specially to fit the curves of their legs. On the feet may be worn shoes made TEXTILES AND CLOTHING 805 from leather. This short review has not covered furnishing or industrial fabrics, which again come in an almost endless variety of fibres, shapes and types. Silk Silk from the domestic worm has the longest staple length of any of the natural textile fibres; it is also the toughest and is extremely resilient, for it can be extended between twenty and twenty-five per cent of its length before it breaks. Another outstanding property of silk is that it reflects light and so can be made to look luxurious, while it is also ideal for wearing next to the skin. The silkworm was domesticated in China in the third millennium BC, but, although cloth was exported to Europe and was highly prized by Roman emperors, cultivation of pure silk did not reach Europe until the sixth century AD. The silk grub makes a cocoon around itself for protection while the chrysalis is being transformed into a moth and produces two protein substances within its body. One of these, fibroin, forms the main core of the fibre, while the second sericin (the so-called ‘silk gum’), is laid on top of the fibroin. The fibroin is secreted from two glands and, when the silkworm is ready to spin its thread, it extrudes a little of this solution, fixes it on to a support and then stretches it out by drawing back its head. In this way, the grub gradually winds around itself a cocoon of a double filament which may be up to 1 000m in length. When the moth is about to emerge from the cocoon, it exudes another substance which melts one end so that it can creep out through the hole. This of course destroys the continuity of the filament and renders that cocoon useless for winding into pure silk. During the early 1860s, Samuel C.Lister persevered in finding ways of mechanically processing this waste silk and so created a new industry. Normally, the chrysalis is killed, for, by immersing the cocoon in hot water, the sericin melts and the filament can be pulled off. The beginning and the end of the cocoon are too fine for practical use and these go to the waste silk processors. If the cocoon is brushed while wet, the loose exterior can be pulled off and soon a single continuous filament will adhere to the brush. This is still too fine to be used on its own, so five, six or seven cocoons are immersed in hot water and unreeled side by side. The remaining sericin hardens as it dries and helps to stick the filaments together. This combined filament is still too fine for knitting or weaving, so it is twisted or ‘thrown’ together with as many others as are necessary to make up the correct weight of thread. Eventually the thread, or the finished fabric, is boiled and the sericin discharged. It is only then that the original double filaments exuded by the silkworm are separated and the true nature of silk, with its sheen and shimmer, begins to appear. The throwing of silk (from the Old English thraw, to whirl or spin) was one of the earliest processes of the textile industry to be mechanized, because the staple length of the fibres was so long. A fibre length of hundreds of yards PART FIVE: TECHNOLOGY AND SOCIETY 806 meant that there were few breakages after the initial unreeling, so not only could the final thread be made very fine, but the operative, and later the machine, needed no skill or ‘feel’: in fact a silk winding machine can be left running unattended. In any other textile industry constant attention is essential, to deal with breaks in the yarn being spun or woven. Linen In the Bible, pure white garments worn in heaven were considered to have been made from linen, which is known to have been used for textiles as early as the seventh millennium BC. It is washable and can be made into very fine, thin cloth so that it was popular with the ancient Egyptians. Linen comes from the bast fibres of flax. The flax plant has a single erect stem up to about a metre tall and branching only at the top, where it bears a number of blue flowers. The plants used to be pulled up by hand, including the root, just before the seeds ripened, but today this can be done by a machine. After drying, the seeds are removed and crushed to make linseed oil and cattle-cake. The stem of flax is made up of a thick woody core surrounded by an outer bark. Between them, parallel to the core, lie the linen fibres. Flax is the most difficult of all fibre sources to prepare for spinning. To separate the bast fibres from the woody core and bark may demand up to seven operations. After removal of the seeds, the flax must be retted. Today this is done with modern chemicals in steam-heated vats, but the traditional method was to submerge bundles of flax in stagnant or slow-running water for two to three weeks until the bark and core began to decay. The stalks were taken out and dried in the sun. After this, the stalk had to be broken, usually by pounding with a mallet. This started to break up the bark and core and loosen the fibres. Today this is done be passing the stalks between fluted rollers. Scutching follows, when the stalks are beaten by flat wooden blades. Water-powered scutching mills were introduced into Northern Ireland during the early part of the eighteenth century. The final stage in the preparation is hackling, where the fibres are drawn through iron spikes set in a board to remove the final pieces of bark or core. Flax fibres can be any staple length up to 25cm (10in) and are very fine, which is the reason they can be spun and woven into light cloth. Wool Sheep were among the earliest animals to be domesticated, probably well before the fourth millennium BC. The fleece grows from two types of follicles, primaries and secondaries. The primaries produce the coarser fibres of the outer coat (hair or kemp), which have been mostly bred out of modern sheep. TEXTILES AND CLOTHING 807 The secondaries grow the more numerous, finer and shorter fibres of the undercoat and are almost always the wool fibres in the strict sense. Their natural crimp and the scaly outer covering of the cuticle enable wool fibres to interlock easily in spinning. Not only does this give maximum stability to woven cloth, but the fibres do not need to be tightly twisted together, therefore airlocks can be formed which give good insulation. Woollen garments can be made flexible and are crease resistant as well as being water-repellent. In antiquity, the fleece was pulled off the sheep as it moulted, with the result that a great deal was lost. The Romans certainly had shears and clipped their flocks. The staple length varied according to the breed of the sheep. Breeds of long-haired sheep might yield wool 40–25 cm (16–10in) long, but short-haired varieties would average 15cm (6in) or less. The fleece would be washed to remove some of the natural grease, or lanolin, and dirt such as burs picked out. In terms of textile technology, discussion of wool includes fibres from goats (angora, cashmere) and other animals such as the camel, alpaca, llama and vicuña. Felt Advantage was taken of the scaly nature of wool to make another early form of fabric, felt. The thin outer covering of the fibres, the cuticle, is composed of overlapping scales which point in one direction. This means that they can slide past each other when moved one way, but will interlock if pulled in opposite directions. It is this characteristic which enables wool to be felted or matted. By using heat, moisture, pressure and vibration, the feltmaker causes the wool fibres to lock together to produce non-woven fabrics which range from the soft and bulky to those which are so solid (such as that for hammers in pianos) that they have to be cut with a saw. A mass of loose hairs or fur, which has been damped with hot water, can be made into a lump of felt by rubbing and squashing it. This can either be flat (for example modern carpet underlays) or it can be shaped (for example a hat or a shoe). It was for these latter purposes that felt was made in antiquity and is still used today. Making hats by planking, that is, rolling the fur on a board by hand, unrolling it, immersing it in hot water and re-rolling it again, was carried on until well after 1970 in the hatting industry. Felt can be a cheap fabric to produce because it consists essentially of only a single process. Recently, there have been attempts to copy it with non-woven fabrics using modern man-made fibres. Cotton Cotton was the only fibre from the seed of a plant which had any commercial value in antiquity. It came either from a tree or from a perennial plant. The PART FIVE: TECHNOLOGY AND SOCIETY 808 fibres grow on the seeds within the seed pod or boll. When this splits open in the summer, the seeds and cotton wool are picked out, traditionally by hand; in developed countries this is now done by machine. Ginning, separating the cotton wool from the seeds, was usually done in the cotton fields themselves. The staple length of cotton varied according to the place where it was grown. The average fibre length was 2.5–3.5cm (1–1 1/3in) but in the nineteenth century a good quality West Indian cotton might grow to 4.5cm (1.8in). Colour and character also varied according to origin, for Egyptian cotton was yellower and West Indian was a silky white. Of all the fibres, cotton needed the least preparation, for after ginning it was ready for the spinning processes. Cotton lacks the harshness of linen and is softer to the touch. It is readily absorbent and this is a quality relevant in hot climates, where the cotton plant flourishes. It was used in these places for clothing long before the birth of Christ. It can be washed easily and has another characteristic, for it burns without smell. For this reason, it was used in the colder northern parts for candle and lamp wicks long before it was made into garments there. EARLY TEXTILE PROCESSES Primitive spinning techniques The origins of textile production are lost in the mists of antiquity. Possibly prehistoric man wanted to secure his stone axe-head more firmly to its shaft, so he twisted some strips of leather together to make a sort of rope. Possibly one of the women, sitting by a fire in a cave, was playing with fur from the skin of an animal they had killed and pulled it out and twisted it into a sort of yarn. A couple of yarns twisted together into a thread could be used for sewing up skins to make garments. The yarn, or thread, could be stored by winding it round a stick, and soon the stick itself was being used to put the twist into the fibres. Put a weight on the stick to act as a flywheel and to give it more momentum and there is the first spindle and whorl; the earliest spinning device which is still used today in some parts of the world. Up to 1800, textile production formed a vital part of the economy of most households. Much later than this, Queen Victoria was photographed working at her spinning wheel. The term ‘spinster’ was originally used for a single woman because she was expected to spin and weave the household textiles she would need in her married home. Learning to spin rough yarn and to weave coarse cloth was fairly easy, but great skill was needed to produce the finer qualities. The raw materials were important, for fine textiles cannot be produced without fine fibres, but the actual spinning implements in a peasant society are so simple that the quality of their construction is unlikely to be reflected in the final product, which is determined solely by the skill of the individual spinner. TEXTILES AND CLOTHING 809 While it is possible to spin directly with the raw materials, the fibres of wool, flax and cotton really need some basic process to begin disentangling them and laying them parallel to each other. The remains of the bark in flax, the seeds or dirt in cotton and grit or burs in wool would be removed at this stage. How this was done in antiquity is not clear, for carding seems to have been a mediaeval invention. Wool was certainly combed in antiquity, and it is possible that the other fibres were combed in some way too. A flat piece of iron, measuring 25–35cm (10–14in) long by 10cm (4in) wide, had teeth about 22cm (8 1/2in) long cut in one end. One comb would be mounted in the top of an upright stake, the wool put on it and another comb pulled through the wool. Short fibres could be pulled out and discarded when spinning the finest yarns, while the long ones were straightened. In the mediaeval period, and later, the combs were kept hot and the wool was well greased. The prepared fibres were wound up and loosely tied to the top of a distaff. Distaffs were basically short sticks, 20–30cm (8–12in) long. Sometimes they were forked to hold the fibres better and sometimes they were elaborately carved. In antiquity, they were held in the left hand, but later longer ones were used which could be stuck in a belt round the spinner’s waist, leaving both hands free for manipulating the fibres. The fibres can be drawn out (drafted) from each other while they are in a loose mass, but, if they are twisted, they will stick together. If sufficient twist is put in, the fibres will be locked together so firmly that they can no longer slide past each other and so a strong yarn is made. Spinning consists in drawing out the requisite number of fibres to form the correct thickness or weight of yarn and then twisting them so they are locked firmly together. All spinning methods, until the recent invention of ‘break’ or ‘open end’ spinning (see p. 842) have relied on two simple principles for twisting and winding on. The first principle is that, if a rod or spindle is rotated, any length of yarn tied to it and held in the same line as it is pointing will be rotated too and so will be twisted. The second principle is that, if the yarn is held at right angles to the spindle, it will be wound on as the spindle is rotated. Some people have claimed that the earliest spinning aid, the spindle and whorl, is a machine because there are two distant parts: the spindle itself, a round piece of wood tapering unequally to a point at both ends, while the whorl is a circular weight with a hole through it which fits over the longer of the spindle’s tapers until it is secured near the bottom. Both are caused to rotate and the whorl acts as a flywheel; and both have to be proportioned to the type of fibres that are to be spun. To spin any yarn, the necessary number of fibres to form the correct thickness, or count, must be drawn from the mass of wool on the distaff and then twisted to give them coherence. A short length of yarn is attached to the top of the spindle and the spindle and whorl are set spinning, dangling from the right hand. The weight of the whorl keeps the spindle rotating for a considerable time while the fibres are being drawn out, or drafted, by the fingers of both hands. The fingers of the right hand allow a little twist from the spinning spindle to PART FIVE: TECHNOLOGY AND SOCIETY 810 reach the drafting zone, which causes the fibres to stick together. The spindle hung from about waist height so that barely a metre could be spun before that length had to be wound on to the spindle and a new one started. To wind on, the yarn had to be unhooked from the spindle tip; the spindle was grasped in one hand and turned while the yarn was guided on from the side by the other hand. By this painfully slow process must have been spun all the linen, wool and cotton yarn used not only by our prehistoric ancestors, but also by the ancient Egyptians, the Greeks, Romans, Saxons and in fact, anybody living before about 1300 AD. Yet the spindle and whorl had two important advantages over the later spinning wheels. They were portable and could be used as women walked to and from market or while guarding flocks. Then, by resting the bottom tip on a stone bearing to relieve the weight on the yarn, very fine threads could be spun which could not be matched on spinning wheels (see p. 813). Primitive weaving Weaving consists of interlacing two sets of threads, the warp and the weft. The warp, which is prepared first, consists of a given number of parallel threads, usually all the same length. These threads are most likely to have been passed through some devices both to keep them at the correct distance apart (the reed) and to enable selected ones to be drawn apart from the others (the heddles). The weft is inserted across the warp threads at right angles to them in a single traverse (a shoot or pick) at a time. How it crosses the warp threads will determine the pattern. It will need to be beaten up against the previous pick to form a closely woven cloth and, at the edges, the warp threads may be selected in a special order to form a strong selvedge to stop the sides unravelling. Textiles discovered in archaeological excavations give some idea of the sort of looms used in antiquity. The simplest are those used for weaving narrow fabrics such as ribbons or belts. One method was to make a heddle-frame which consisted of thin vertical strips of wood or bone each with a hole in the middle. The strips were set slightly apart in a frame, so that slots were left between them. The warp threads were passed alternately, one through a slot and the next through a hole. One end of the warp could be tied to the weaver’s belt and the other to anything convenient which could take some tension. By depressing the heddle-frame, the weft could be passed above the warp threads passing through the holes but below those in the slots which were now at the top. This gave one opening, or shed. By raising the heddle-frame, the weft could be passed back; this time over the warp threads in the slots and under those in the holes, which gave the other shed. The heddle-frame could be used to beat up the weft too, and the finished fabric had a plain weave. More refined versions of the heddle-frame looms, made up into small boxes, may be seen in many museums in the north-east of the USA, for they were easy to operate TEXTILES AND CLOTHING 811 and could help to while away profitably the long evenings in the remote villages of the New World. Ribbons or tapes with fringes could also be woven on them. Another method of weaving narrow fabrics was to use tablets. Flat plates of bone, either triangular or square, had a hole drilled at each corner and a warp thread passed through. By twisting the tablet, a different thread, or threads, could be brought to the top position and the weft passed through the shed between them. The width of the fabric was determined by the number of tablets and the delicacy of the pattern was created by the skill of the weaver in knowing which combination of tablets to turn to give the next shed. Tablet weaving was suitable for making belts or webbing, and both tablet and heddle- frame weaving were used for making the starting borders for the most important loom used in antiquity, the warp-weighted vertical loom. In many archaeological excavations in Europe, evidence has been found of the vertical loom in the form of loom weights, but so far no actual looms have survived. However, reconstructions have been made based on those still in use in the north of Scandinavia. The warp-weighted vertical loom had two wooden uprights, 2m (7ft)high or more, which did not stand vertically, but were made to lean against a wall at a convenient angle. They were joined across the top by a cloth-beam which could probably revolve in holes in the uprights and might be as much as 3m (10ft) long, determining the maximum width of the cloth. From each upright at about breast height there projected a short bracket, the end of which was usually forked to support one end of the heddle rod. Lower down, a shed rod spanned the gap between the uprights. First the warp had to be prepared, which was done by weaving a starting border. The warp of this border would form the width of the cloth and its weft became the warp of the cloth by pulling out the weft at one side of the border into long loops. Usually this was done on a frame, so that all the loops had equal lengths. The ends of the loops were cut and this gave the alternate threads for the main warp. The border was fixed to the cloth-beam at the top of the loom. All the odd-numbered warp threads were tied in groups to loom weights and hung over the shed rod. All the even-numbered warp threads were tied to another set of loom weights and hung down perpendicularly behind the shed rod. The angle between the two sets of warp threads gave one shed through which the weft was passed and beaten up by either the fingers or a sword stick. The back threads were tied by loops which passed either side of the front ones to the heddle rod, so that, when the other shed was wanted, the heddle rod would be pulled forward and placed in the forks of the short brackets in front of the loom. This brought the back, even-numbered, warp threads to the front of the odd-numbered ones, and so the weft could be shot through the second shed for plain weaving. It was possible to weave a simple pattern of, say, a two-by-two twill on these looms, but nothing more complicated. . developed. The skill of the farmer is still of the utmost importance in the application of these advances, since only with good husbandry can they be fully realized. The skill and inherent knowledge of. position and the weft passed through the shed between them. The width of the fabric was determined by the number of tablets and the delicacy of the pattern was created by the skill of the weaver. keep them at the correct distance apart (the reed) and to enable selected ones to be drawn apart from the others (the heddles). The weft is inserted across the warp threads at right angles to them