An Encyclopedia of the History of Technology part 101 pot

10 217 0
An Encyclopedia of the History of Technology part 101 pot

Đang tải... (xem toàn văn)

Thông tin tài liệu

PART FIVE: TECHNOLOGY AND SOCIETY 982 with a wet wad placed between the charge and the shot in order to prevent premature detonation or ‘cock-off’. At sea, chain-shot, two roundshot linked by a chain, was often used to cut the enemy’s rigging. Varieties of grapeshot, normally musket balls in a container, were available to engage infantry and cavalry at close quarters. Priming became more efficient in the early 1700s with the introduction of a powder-filled tin tube which was inserted in the touch-hole, and bag charges, measured amounts of propellant sealed in canvas bags. The early part of the eighteenth century also saw the first serious attention being paid to the science of ballistics. Before then guns were either laid directly, that is by lining the target up with the line of the barrel, or by using a gunner’s quadrant for longer ranges than point blank. This consisted of two arms, one longer than the other, with a metal arc between them marked in 12° intervals and a plumb line. The longer arm was placed in the bore and the angle of aim above the horizontal indicated by the plumbline. Each marking on the arc was known as a ‘point’ and range was calculated in terms of the number of times above point blank range that each point represented, with 45° mistakenly believed to be the correct setting to achieve maximum range for the piece. The first development was the drawing up of mathematical rules for firing mortars by the Frenchman de Blondel, who drew largely on Galileo’s work on the laws of movement. Little note was taken of de Blondel in military circles, but another Frenchman, de Bélidor, in his Le Bombardier français (1731) went several stages further, publishing complete tables of ranges for charges and elevations, and furthermore proved that the charges currently used were excessive, resulting in premature wearing of barrels and carriages and thus decreasing accuracy. Until this time there had been a long-held theory that the ideal weight of charge was two-thirds that of the shot, but as a result of de Bélidor’s findings, which showed that the power of a charge was greatest at the end of the explosion, the regulation amount of charge was reduced by half, paving the way for the construction of shorter and lighter guns. The practitioners of eighteenth century warfare regarded it as a science rather than an art and believed that it could successfully be waged according to precise rules. Nowhere was this better demonstrated than in siege warfare. The seventeenth century is remarkable for the number of distinguished military engineers it produced. Most notable of all was the French Marshal Sébastien le Prestre de Vauban, whose influence on the art of fortification was to outlive him by almost 200 years. While retaining the traditional fortress layout of inner enclosure, rampart, moat and outer rampart, Vauban applied the principles of geometry to ensure that the enemy was subjected to the maximum amount of fire, by both cannon and musket, at any point in the defences. The basis of his design was the obtuse-angled bastion, with the point facing the enemy, thus giving him a very small target, and with the ability to cover the walls adjacent to it with enfilade fire. The core of the fortress was shaped like a pentagon and WEAPONS AND ARMOUR 983 successive lines of defences forced the enemy to commence his siege operations from a distance as well as providing defence in depth. Vauban was also adept at laying siege to fortresses and his major contribution to this art was the digging of parallel trenches, connected by zig-zags, which enabled the besieger to engage any part of the defence from behind cover. THE INDUSTRIAL AGE The Industrial Revolution of the late eighteenth and first half of the nineteenth centuries had as dramatic an effect on military technology as it did on all other aspects of life. One of the most significant changes was brought about by the development of the factory and the mechanization of manufacturing processes. Not only did this mean the beginning of mass production of arms, but also that their parts became interchangeable. Indeed, the first to take advantage of this was a French gunmaker, Le Blanc, who in the early 1780s began to manufacture musket parts, which, after checking with a standard gauge, could be fitted to any of the same type of musket. The concept was taken up in the USA before the turn of the century by Eli Whitney, and by 1820 the principle had been introduced into the US government armament factories at Springfield and Harpers Ferry. In addition, by the end of the eighteenth century the art of boring out the barrels of cannon had reached a level where, for the first time, true standardization of calibre could be guaranteed (see pp. 396–7). For the infantryman, the most significant development at the onset of the nineteenth century was the rifle. The idea of rifling, that is, scoring spiral grooves inside a gun barrel in order to impart spin to the projectile, and hence achieve greater range and accuracy, was not new. Sporting rifles were in vogue from the beginning of the sixteenth century, but there was little military enthusiasm for them because of the difficulties of manufacture, a consideration which applied to a number of seemingly promising new concepts of the nineteenth century. Not until around 1750 did armies begin to pay serious attention to the rifle. It was first used in Austria and Germany, where it was called a Jaeger, or ‘hunter’, and the troops who used it were light infantry who adopted the same name. Swiss and German immigrants took it to North America and from it the famous Kentucky rifle was produced. The British, too, at the end of the century formed a Corps of Riflemen armed with the Baker rifle. The main problem with these early rifles was how to reconcile the requirement for the ball to be easily rammed home with the need for it to be a tight enough fit for the rifling to have effect. The first solution to this came in the 1820s when a Frenchman, Captain Delvigne, designed a rifle with a smaller chamber than the bore. Using an iron ramrod, the firer tapped the soft lead ball into the chamber in such a way as to expand its shape to fit the shoulders of the rifling. The main breakthrough came, however 25 years later PART FIVE: TECHNOLOGY AND SOCIETY 984 when another Frenchman, Captain Minié, introduced his Minié ball. This had a hollow base and the introduction of the hot propellant gases into it caused the bullet to expand into the rifling. The bullet itself, rather than being spherical, was cylindro-conoidal in shape and marked the beginning of the bullet shape as we know it. Early rifles still worked on the flintlock ignition principle, but in the 1800s a Scotsman, Alexander Forsyth, produced an idea which would radically reduce the incidence of misfires in firearms. The percussion lock employed a volatile chemical detonating powder, or fulminate, contained in a bottle-shaped magazine which could be rotated so as to allow a quantity of fulminate into the pan. This was then struck by a hammer-shaped cock. The next development followed quickly. This was the percussion cap, wherein the bottle-shaped magazine gave way to individual pellets, copper tubes and finally copper caps of fulminate. The greatest breakthrough came, however, from a Swiss, Samuel Pauly, who, in conjunction with the French gunsmith Prélat, produced in 1812 the first cartridge to contain its own primer. It was made of paper, but with a reusable metal base with a cavity in the centre for the fulminate, and a striker operated by a spring causing ignition. This was called centre-fire and is the most common type of cartridge today. Another current type, rimfire, where the fulminate is contained in the rim of the cartridge base and crushed between the striker and the face of the breech, was also developed at much the same time. These early cartridges relied on breech-loading, the next highly significant development in firearms. Like rifling, breech-loaders had been in existence for a long time; models were developed as early as the fourteenth century. Various attempts were made through the ages to develop a satisfactory breech-loading system—removable barrels, pivoted and separate reloadable chambers—but the main problem was achieving a reliable gas-tight seal, or obturation. Pauly’s work on the cartridge encouraged a former employee, Nikolaus von Dreyse, to make the necessary breakthrough. In 1827 he produced a cartridge with fulminate contained in its base. A few years later he created a bolt-action breechloader to take this cartridge, with a striking needle operated by a spring. Von Dreyse’s needle gun, as it was called, was adopted by the Prussian army in 1840 and made a major contribution to its victories over the Danes in 1864 and the Austrians in 1866. During the next thirty years all armies introduced breechloaders, many based on the principle of the needle gun, with a sliding and sometimes rotating bolt to assist obturation. A totally gas-tight breech was only finally achieved, however, when in 1866 an Englishman, Colonel E.M.Boxer, developed a brass cartridge case with a percussion cap set into the base. On firing, the heat of the propellant gases expanded the walls of the cartridge against the chamber, thus creating a seal. Armed with an effective breech-loading rifle, the infantryman could now reload while lying down behind cover and this radically increased his effectiveness, especially in defence. His firepower was also being enhanced in WEAPONS AND ARMOUR 985 other ways designed to produce a faster rate of fire than even the single-shot breechloader. The pioneering spirit behind this was the American Samuel Colt, who in 1835 took out a British patent for a pistol with cylindrical revolving chambers, with a nipple at the base, separated by partitions in order to prevent a neighbouring charge from being detonated. The action of the hammer rotated the cylinder and aligned each chamber with a barrel. The bullets still had to be rammed into the chamber, but in 1851 an Englishman, Robert Adams, went a stage further in producing a revolver with special wadded bullets and a self-cocking action. The final development came in 1857 when Smith and Wesson patented the first revolver designed to fire metal cartridges. These were rimfire, but centre-fire cartridges quickly followed. During the same period parallel efforts were being made to develop a repeating rifle. The first to be produced was by Walter Hunt in 1849. This had a tubular magazine fitted under the barrel and was the forerunner of the famous Volcanic, Henry and, more especially the 1866, 1873 and 1876 Winchester rifle models. In the latter, the rounds were driven into the receiver by a long coil spring, having been inserted into the magazine by means of a trap on the righthand side of the receiver. From here a carrier took the leading round and aligned it with the chamber. A horizontal sliding breech-block, operated by a lever incorporated in the trigger guard, rammed it home. The main drawback of this system was that the accuracy of the weapon suffered through the constant shifting of the centre of gravity, and the magazine took a long time to load. This was overcome in the 1880s by the vertical magazine fitted below the breech-block. The other means by which the firepower of the foot soldier was increased was through the development of the machine gun. The first was one built by a Belgian engineer, Fafschamps, in conjunction with the firm Fusnot et Montigny Fils, in the 1850s. It consisted of a cluster of breech-loading barrels, and used cardboard-cased cartridges which were fired by a complex mechanism using long firing pins. Subsequent Montigny models were produced using the same principle. Another derivation was the Meudon or Reffye, more commonly known as the mitrailleuse. This had 25 barrels of 13mm (0.5in) calibre which were encased in bronze and mounted on a 4-pdr artillery chassis. It was operated by two worm screws, one of which moved the firing mechanism backwards and forwards, while the other aligned the firing plate with the barrels. Unfortunately, although the French employed it during the Franco- Prussian War of 1870–1, its seeming resemblance to an artillery piece caused them to use it in this way, at its extreme range rather than as an infantry weapon, and it was not as effective as it should have been. A more successful model was that developed by the American Dr Richard Gatling and the principle is still used in the modern US 20mm (0.79in) Vulcan air defence system and the Minigun. Rather than having a moving firing mechanism, the Gatling gun took up an old idea of revolving barrels mounted PART FIVE: TECHNOLOGY AND SOCIETY 986 in a cluster round a shaft. Cartridges—the Gatling was one of the first machine guns to use metal cases—were fed in by means of a hopper, and the whole system operated by a hand crank which operated an endless screw. The US Army adopted the weapon in 1866 and soon many European armies had also bought it. Later, the hopper was replaced by a drum magazine and then by a straight horizontal ammunition strip. Other well known hand cranked types of the time were the Swedish Nordenfeldt and American Gardner. The first truly automatic machine gun, whereby all the firer had to do was to continue to press the trigger, was built by another American, Hiram Maxim, in 1884. He took advantage of the recoil of the breech-block on firing to use it to extract the empty cartridge case and eject it, re-lock the firing mechanism and compress the return spring. This would then drive the working parts forward, chamber the next round from the ammunition belt and activate the firing pin. Many armies quickly adopted the Maxim gun. Ten years later came the French Hotchkiss which used a different system, gas operation. Here a portion of the propellant gases was directed into a piston situated under the barrel and this then drove the working parts to the rear, where a return spring brought them forward again. Progress in the development of artillery during the nineteenth century was less dramatic than with small arms, because the technical challenges were often greater and more complex. At the beginning of the century a new type of ammunition was gradually adopted, case shot or shrapnel, as it became more commonly known after its British inventor General Sir Henry Shrapnel. In its original form it consisted of a hollow shell filled with musket balls and fitted with a bursting charge and fuse. Against troops in the open it could be devastating in its effect and by the end of the century it was the main type of ammunition used in field artillery. During the first decade of the century another British officer, William Congreve, developed a 12-pdr explosive rocket and a battery of these was present at the Battle of Waterloo in 1815. Congreve rockets were, however, too inaccurate to be of much effect and the concept was not pursued. There was a significant improvement in the ignition system on artillery pieces when the French developed the friction tube in the 1820s to replace the slow match and fuse tube. It consisted of a thin brass or copper tube which was inserted in the vent, and contained highly compressed gunpowder, which was detonated by a saltpetre and antimony mixture contained in an inner tube. Running through this was a copper wire, which when pulled created a violent friction and ignited the mixture. The next radical change occurred in the middle of the century, when round- shot was replaced by the elongated conical projectile. The problem of round- shot in terms of accuracy was that the centre of gravity seldom coincided with the geometric centre, which meant that trajectories would vary considerably. Hence it was difficult to draw up ballistic tables with any precise accuracy. WEAPONS AND ARMOUR 987 However the conical round, in order to achieve stability in flight, needed to rotate about its own axis and this could only be achieved by rifling. The achievement of this was more difficult than with small arms because iron projectiles could not be forced into the rifling in the same way as lead bullets; in addition, windage, allowing propellant gases to flow past the projectile while it is in the bore, hence reducing velocity and accuracy, had to be allowed for if muzzle loading was not to become impossibly difficult. The initial solution was to produce shells with studs on them which would fit into the rifling, and the French first demonstrated the effectiveness of rifled guns of this type at Solferino in 1859. Nevertheless, as with small arms, full advantage could not be taken of rifled guns until breech-loading with reliable obturation had come into being. The first attempts to achieve a satisfactory breech-loading system began in the early 1840s. The key to it was the obturator and various types were used. Early models included pads of material such as leather or hemp, which would expand but were not easily combustible. These would be forced against the bore when firing. For larger guns metal rings were often used. Another system, known as the Wahrendorff system, used a piston-like obturator with a cylindrical head which fitted snugly into the breech. The shell and its charge were first loaded and the obturator closed and locked into the breech by means of a handle through the rear end of the piston. Indeed, most systems in service during the latter half of the nineteenth century used some form of screw mechanism combined with obturator rings. The main trouble was that they were expensive to produce, complicated, and initially radically increased the weight of the gun. Indeed, in 1870, the British army reverted to muzzle loaders for a short time because of the expense. More efficient methods of barrel manufacture were, however, evolved. Bronze finally began to give way to steel, for field guns especially—the German firm of Krupp was a pioneer in this—while those of larger calibre were made of cast-iron, which was cheaper than steel. To cope with the greater pressures inside the barrel caused by successful obturation, cast-iron hoops were externally secured to the breech end, but this was later superseded by shrinking concentric tubes of metal on to one another. Studded shells were replaced by ones with copper driving bands, which eliminated windage much more effectively, and all-metal gun carriages were built. Recoil systems, designed to reduce the effect of recoil on the gun carriage, thereby making it a more stable firing platform, came into being by the end of the century, firstly mechanical and then hydraulic. The greater lethality of guns meant that the traditional wooden-walled warship was vulnerable and from the 1850s onwards armoured plate began to be used in increasing quantities, and the age of the ‘ironclad’ began. Gradually, too, the traditional broadside gave way to larger guns mounted in revolving turrets: the first new-style naval engagement, between the PART FIVE: TECHNOLOGY AND SOCIETY 988 armour-plated Merrimac and the Monitor with her revolving turret, took place in 1862 during the American Civil War. This war also proved the effectiveness of rifled guns against fortifications, and one result of this was to cause existing fortresses to be modified through the introduction of retractable armoured turrets. The mid-nineteenth century saw the introduction of a new range of explosives to augment gunpowder. The groundwork was laid by the discovery of nitroglycerine by the Italian Ascanio Sobrero in 1847. Alfred Nobel, the Swedish chemist who was to found the famous prizes for achievements in science, literature and world peace, developed dynamite by mixing nitroglycerine with kieselguhr, a white powder made of the skeletons of unicellular marine organisms called diatoms. At much the same time, in the 1860s, trinitrotoluene (TNT) was produced by Wilbrand and others by nitration of toluene and its derivatives with a mixture of nitric and sulphuric acids. It was Nobel who first produced fulminate of mercury detonators and who discovered gelatin and the gelignites. In the late 1880s there were three significant discoveries. The first was the adoption of picric acid as a charge for use in projectiles, the other two concerned smokeless powder. Gunpowder had often been called ‘black powder’ because of the telltale smoke signature it gave on the firing of a weapon. In 1885 the Frenchman Vieille discovered that by partially gelatinizing a mixture of guncotton (wood fibre treated with nitric and sulphuric acids and otherwise known as nitrocellulose) and nitrocotton in alcohol and ether he could produce a smokeless powder which was quickly adopted for the cartridges of the current French army service rifle, the Lebel. Three years later, Nobel produced another smokeless powder, ballistite, a mixture of nitroglycerine and nitrocotton. Furthermore, by mixing guncotton with nitroglycerine and mineral jelly, a variation on this, cordite, was produced. These smokeless propellants, like the magazine rifle, machine gun and breech-loading artillery piece, favoured the defence. Moreover, because they were slower burning, the rate of energy release in the barrel was such that the longer the barrel the greater the thrust at lower internal pressures. Hence barrel walls did not have to be so thick and ranges were significantly increased. Although not related to weapons technology, two other nineteenth-century inventions had a dramatic impact on warfare. The first of these was the railway (see Chapter 11), which greatly speeded up the strategic movement of armies. Indeed, a major reason for the successes of Prussia during the 1860s was that the kingdom’s railways had been laid out in order to be able to mobilize and deploy troops to her frontiers with potential enemies with great speed. The other important invention was the electric telegraph (see Chapter 15) which speeded up the passage of information so that fleets and armies could react very much more quickly to situations. Most of the developments reviewed in this section were blooded on the battlefield during the American WEAPONS AND ARMOUR 989 Civil War (1861–5) and it is for this reason that it has often been called the first of the modern wars. In spite of all these advances one aspect of war remained largely untouched. This concerned the horse, still, in spite of the coming of the railway, a major means of transportation. While the railway speeded up strategic movement, that near or on the battlefield was still heavily reliant on horse-drawn transport. Cavalry, too, still played a major role on the battlefield but, apart from receiving modern carbines, their other weapons did not change. The sword remained, although it had now reverted to a straight blade, the lance enjoyed a new lease of life, deriving from the performance of the Polish lancers during the Napoleonic Wars, and many European cavalry regiments still wore the helmet and cuirass. THE FIRST WORLD WAR Artillery and trench warfare Indications that the new military technology favoured defence over attack had been apparent in the latter stages of the American Civil War, the RussoTurkish War of 1877–8 and the Russo-Japanese War of 1904–5 in the shape of trench warfare. In 1897 a Polish banker, I.S.Bloch, accurately forecast the effect that modern weapon systems would have on a future major war in Europe. Nevertheless, the countries who went to war in August 1914 all believed that they could achieve a quick victory through manoeuvre and concentration of superior force at the critical point. The early battles, especially on the Western Front, soon dispelled this conviction, when it was found that machine guns and magazine rifles operated from behind cover were many times superior to infantry attacking in the open. For the next three years the main technological effort would be directed towards breaking the resulting stalemate. For much of the time it was artillery which played the dominant role in the belief that fire alone could create a breach in the enemy’s trench system. Initially the Central Powers had an advantage, in that they had put more effort into developing heavy siege artillery in the years leading up to 1914 and this quickly proved itself superior to the fortifications of the day, particularly against the Belgian frontier fortresses, which had been thought impregnable. As the war progressed, calibres increased to as much as 15in (38cm) and, because these heavy guns were difficult to move and emplace, both sides used gun carriages mounted on railway lines. They used high explosives shells with separated charges. Field artillery, however, was still the backbone and in the years preceding the First World War it had undergone a dramatic change. PART FIVE: TECHNOLOGY AND SOCIETY 990 This was pioneered by the French when they produced their famous 75mm (3in) field gun in 1897. The most significant of its several novel features was a hydro-pneumatic recoil system. This meant that the shock of recoil did not force the carriage itself backwards, the end of the trail having a small spade attached which dug into the ground; the recoil was also used to open the breech after firing. Furthermore, it had fixed ammunition with shell and propellant combined, as in small arms ammunition. All this meant a very much faster rate of fire, and this type of gun became known as quick firing or QF. The Germans, with their 77mm, and the British, with their 18-pdr, quickly followed suit. The British and French had a preponderance of shrapnel ammunition for their field guns, although they did have some high explosive ammunition. The Germans, however, pinned their hopes on the Krupp ‘Universal’ shell, which was a dualpurpose round, containing both TNT and shrapnel. It could be set for an air burst, with the explosive head landing in the middle of the shrapnel impact area and detonating, or for a ground burst, with the shrapnel being thrown outwards. While perhaps not as effective as a single purpose HE or shrapnel shell, it nevertheless gave the Germans an advantage with the onset of trench warfare, where shrapnel had little effect against men dug in. Consequently, the British and French had to re-order their ammunition production priorities. As the war progressed artillery techniques became more sophisticated. Until the twentieth century artillery had always employed direct fire techniques, that is, the gun was laid directly on the target. Improvements in gun sights, especially with the introduction of the calibrated dial sight, and in ammunition and recoil systems, meant that guns were very much more accurate and the concept of indirect fire was evolved. This meant that guns which could not see the target were directed by an observer elsewhere who could. It was of course essential that the observer had means of communication with the gun position and this was achieved through the use of the field telephone and cable. A variation on this was developed by the British in early 1915 using aircraft with primitive wireless sets in order to spot and correct the fall of shot. Until the last half of the war artillery had to register its targets before supporting a major attack, which meant that surprise was lost and battery positions given away. To get over this predicted fire was developed, firstly through a detailed topographical survey of the Western Front and later by means of a process called calibration. This was the application of a detailed study of each individual gun’s ballistic performance, taking into account adjustments in range caused by meteorological factors such as temperature, barometric pressure and wind. By 1918 predicted fire had become very accurate. For counter-battery work enemy gun positions were pinpointed either by taking bearings of gun flashes or, still better, by sound ranging. This made use of an electronic device developed during the war, which could isolate the sound of a particular gun through a system of microphones and a jet of air playing on an electricity-carrying wire. This could detect the wave made by the shell flying WEAPONS AND ARMOUR 991 through the air by the increased cold air played on the wire which caused a short break in the electric circuit. The vulnerability of battery positions and troop concentrations to observation from the air brought about a need for camouflage. The use of netting painted in colours to merge with the landscape, under which guns could be placed, became widespread. The roofs of hutments were similarly camouflaged. Snipers used natural foliage, if they could find it, to disguise themselves, and observation posts were often very ingeniously hidden. One operated in the Ypres Salient from a hollowed-out tree for many months. At sea, too, ships were often painted in zig-zag stripes to make them more difficult to identify from a submarine’s periscope. Trench warfare itself brought about a host of new weapons, some of which were revivals from the past. One of these was the hand grenade. Early models were home-made affairs, often using ration tins filled with gun cotton and nails, with a detonator and a fuse which was lit by a cigarette. In 1915 more reliable types were designed and mass-produced, the two most famous being the British Mills Bomb, with its pineapple-like shape designed to break up into segments on detonation, and the German Potato Masher, a stick grenade with streamer attached in order to steady it during flight. Rifle grenades also reappeared and an example of this was the British Hale grenade, which was fitted with a long steel rod inserted into the rifle barrel and fired using a special blank cartridge. There were even grenade throwers based on the old ballista concept. Mortars, too, came back into fashion in the shape of the trench mortar. The first to appear was the German Minenwerfer (=minethrower), which was of 90mm (3.54in) calibre and breech-loading. The bomb had an ingenious fuse which would detonate it no matter which way the bomb landed. Later models were rifled and muzzle loading. The eventual British reply was the Stokes Mortar, muzzle-loading and smoothbore. The bomb had a shotgun cartridge charged with ballistite inserted in its base, and it was dropped down the barrel on to an exposed firing pin which detonated the propellant. The most common calibre was 3in (76mm), but 4in (100mm), 6in (152mm) and even 945in (240mm) models were produced. Sapping and mining also saw a resurgence as each side tunnelled under the other’s trenches and set off underground mines. The most spectacular example of this were the nineteen mines, representing almost one million pounds (455,000kg) of ammonal and blasting gelatine, implanted by the British under the Messines-Wytschaete ridge over a two-year period. On 7 June 1917, as a prelude to a highly successful operation to seize the ridge, they were exploded: the noise was heard in England. A successor to the mace, the loaded stick or cosh, was much used by patrols in no man’s land, and another reminder of mediaeval warfare came in the shape of the steel helmets adopted by all nations as protection against head wounds. German snipers also used body . most significant changes was brought about by the development of the factory and the mechanization of manufacturing processes. Not only did this mean the beginning of mass production of arms, but. of life, deriving from the performance of the Polish lancers during the Napoleonic Wars, and many European cavalry regiments still wore the helmet and cuirass. THE FIRST WORLD WAR Artillery and. the most common type of cartridge today. Another current type, rimfire, where the fulminate is contained in the rim of the cartridge base and crushed between the striker and the face of the breech, was

Ngày đăng: 04/07/2014, 01:20

Tài liệu cùng người dùng

Tài liệu liên quan