PART THREE: TRANSPORT 492 Groningen province and Friesland to link Groningen and Lemmar on the Ijsselmeer and this has been enlarged for 1350 tonne barges and 400 tonne coasting vessels. It is known as the Van Starkenborgh Canal in Groningen and the Prinses Margriet Canal in Friesland. The Eemskanaal constructed in 1866–76 from Groningen eastward to Delfzijl on the Ems estuary has also been enlarged. A westward branch from Suawoude near Leeuwarden, the Van Harinxma Canal to Harlingen facing Terschelling, has also been built. In this group, too, is the Winschoter Diep running eastward from Groningen to the German border. These major waterways supplement the many minor ones. Following the Treaty of Vienna in 1815, what is now Belgium, the Netherlands and Luxembourg were united under William I of the Netherlands. He recognized the importance of water transport and one proposal of significance was to link the Meuse and the Moselle so that the long, tedious journey via the Rhine could be avoided. This was to be accomplished by linking the Ourthe, which (as a tributary of the Meuse meeting it at Liège) was navigable to Barvaux, at that time the limit of navigation, across Luxembourg to join the Sure near Diekirch and thence via Echternach into the Moselle almost opposite its confluence with the Saar. Work started in 1826 and some excavation, including the beginning of the Bernistap tunnel, was carried out before the Belgian Revolution occurred in 1830. Work then ceased; Belgium, now a separate country, was at the time financially unable to continue the work and it was never resumed. Rather more successful was the Ghent-Terneuzen Canal which superseded an earlier small canal giving Ghent access to the sea via the Schelde in 1827. Terneuzen on the Schelde became Dutch after 1830 while Ghent remained in Belgium, but the canal served Ghent well, being reconstructed in the 1870s and again in 1910; in 1968 its capacity was increased to take ships of 60,000 tonnes. The major development in recent canal construction has been the ScheldeRhine Canal to allow Antwerp traffic to gain the Rhine. A new canal has been built from Antwerp to bypass the Western Schelde and enter the Eastern Schelde at Kreekrak locks. The route then crosses the Eastern Schelde and across Tholen to the Volkerak which has been dammed off from the open sea as part of the great Dutch Delta Plan for prevention of the kind of flood disaster which occurred in 1953. To reach the Hollandsche Diep and thence the Rhine, it is necessary to pass the Volkerak locks. Over the locks is now a major road junction, yet the whole area was open sea in the 1960s. A curtain of air bubbles rising from the bottom of the locks creates a turbulence which inhibits the mixing of the fresh and salt water, thus preventing salt water from entering the new fresh-water areas created by the Delta Plan and so preserving the ecology and fertility of the new land areas. Further south in Belgium changes in the coastline have affected the northwestern area. Before the fifteenth century Bruges had ready access to the INLAND WATERWAYS 493 sea through its outport at Damme, but a storm in 1404–5 caused the Zwijn, which led to Damme from the sea, to silt up. A new channel was built to Sluis and then in 1622 a canal to Ostend was constructed and later extended to Nieuport and Dunkirk. Eastwards a canal was built in 1613–23 from Bruges to Ghent and though this has been improved Bruges has never regained her former commercial importance. Much more important were the canal developments in connection with the coalfields in the south of the country and the trade through to France. The Mons-Condé Canal was completed in 1818, crossing into France to link with the Escaut (Schelde), and later in 1826 the Antoing-Pommeroeil Canal enabled barges to travel from Mons to south of Tournai on the Escaut entirely within Belgian territory. Also within this construction period came the building of the Brussels- Charleroi Canal for small barges in 1832. This was enlarged to 300 tonne standard during the long period 1854–1914 and the number of locks was considerably reduced. In the period after World War Two it was reconstructed to 1350 tonne standard and this included the major engineering work of the Ronquieres inclined plane. In this reconstruction the summit level was lowered to lengthen it from 11 to 28km (6.8 to 17.4 miles) three locks replaced the eleven between Charleroi and the summit, and seven locks and the inclined plane replaced the previous twenty-seven on the Brussels side. The canal was also realigned. The inclined plane is 1432m (4698ft) long and barges are carried in two independently operated tanks or caissons whose weight can vary between 5000 and 5700 tonnes according to the amount of water in the tank. Each tank is attached by cables to a counterweight of 5200 tonnes which also travels up and down the incline, and can take four 300 tonne barges or one 1350 tonne barge. There have been considerable savings in time between Charleroi and Brussels since the incline was opened in 1968. This canal links near Charleroi with the Canal de Mons or Canal du Centre, construction of which began in 1880. This was an extension of the MonsCondé Canal and in its course there is a change in level near La Louvière of 66.19m (217.2ft) in 8km (5 miles). Construction was under way at the same time as the La Fontinettes lift was being built on the Neuffossée Canal in France, so it was decided that this escarpment should be surmounted by four lifts and Edwin Clark was engaged as designer. All were to be of the hydraulic type, but of steel girder construction instead of brick and masonry. The first, at Houdeng-Goegnies, was opened by King Leopold II on 4 June 1888. The other three, at Houdeng-Aimeries, Bracquegnies and Thieu, were not opened until 1917. Modernization of this canal will replace the four lifts by a single lift of 73m (239.5ft) at Strepy-Thieu to take 1350 tonne barges. The Maas (Meuse) in the east of Belgium has always been a difficult river because of its variable flow, and canals were proposed to pass the hazardous PART THREE: TRANSPORT 494 stretches, particularly between Maastricht and ’s Hertogenbosch. The Zuid- Willemsvaart Canal was built between 1823 and 1826 and was enlarged in 1864–70. Further improvements took place by the construction of the Juliana Canal, 35.6km (22.1 miles) between 1915 and 1935 replacing the longer and smaller capacity Zuid-Willemsvaart. A link between the Maas and the Waal was built between 1920 and 1927 near Nijmegen and the Albert Canal was built between 1930 and 1940 to link the Meuse near Liège with the Schelde at Antwerp. In the west of Belgium the Baudouin Canal has been built between Bruges and Zeebrugge, and at Ghent a ringvaart, or perimeter canal, circling the city was completed in 1969. Work on upgrading the line from the Escaut to Brussels docks will enable it to take 9000 tonne pushtows. GERMANY Although Germany as a political unit was a nineteenth-century creation out of a number of independent states, internal transport by water has been a major factor in the territory’s economic development over the centuries. It is only, however, within the last two hundred years that the present waterway network has evolved, linking the great rivers of the Rhine, Danube, Elbe, Oder and their tributaries. The Rhine-Main-Danube Canal nearing completion in the late 1980s (see p. 499) was conceived centuries ago when Charlemagne saw the potential value of a link between north-west and south-east Europe. The construction of the Fossa Carolina, of which traces still remain in the vicinity of Weissenburg in Bavaria, was started in AD 793 using demobilized soldiers and prisoners of war, but it was left unfinished and the fulfilment of the vision of boats sailing from the North Sea to the Black Sea had to wait for another thousand years. Meanwhile the need for improved transport from the salt producing areas near Lüneburg led to the construction of the Stecknitz Canal linking the Elbe and the Baltic at Lübeck. Transport had previously been by a devious route partially overland and partially by water using the rivers Ilnenau and Delvenau, an almost impossible route because of the interposition of mill dams. There is a ridge between the Elbe and Lübeck and crossing this involved a rise on each side to the summit. The Stecknitz Canal, completed at the end of the fourteenth century, thus became Europe’s first summit level canal with the first boat passing through in July 1398. It was still a tedious journey as flash locks were used and boats could take several weeks to travel its 100km (62 miles). With various alterations to its line and reconstructions to give greater capacity, the link is continued today as the Elbe-Trave Canal. Preserved as an industrial monument is the Palmschleuse, a circular lock to the north of Lauenburg dating from 1734. INLAND WATERWAYS 495 On the other side of the country the growing importance of Berlin made it imperative that transport links should be improved between the Spree in that city and the Oder. In the early fifteenth century locks had been built on the Havel and Spree to provide a connection between Berlin and Hamburg and this was followed in 1540 by a decision to build a canal to the Oder. Lack of money delayed the start but eventually it was completed in 1620 after the start of the Thirty Years War (1618–48). It was short-lived: having already started decaying during the war it ceased to exist soo after its end. Known as the Finow Canal, it was reconstructed later and now on its third realignment carries a large tonnage between Germany and Poland. Further south a second link between Berlin and the Oder was provided by the Oder-Spree Canal, constructed soon after the Thirty Years War, running eastwards from Berlin to join the Oder just south of Frankfurt-on-Oder at Briekow. It was completed in 1669 and was important for the westbound traffic from the Silesian coalfield. It was also the third European summit level canal. The needs of Berlin were still not satisfied and two further canals were built in the eighteen century, thus creating in Berlin a focal point of the German waterway system: the Plaue Canal, now known as the Elbe-Havel Canal, built in 1743–6 linking the Elbe north of Magdebury to the Havel at the Plauer See near Berlin, and in the east as improved Finow Canal built in 1744–51 to rein-state the link between Berlin and the northern Oder leading to Stettin. The aftermath of the Thirty Year War also led to suggestions for improvements to the River Ruhr to provide transport from the coal measures being exploited in the valley. The nobility of Kleve, part of the domains of the Elector of Brandendurg, persuaded the Elector to allow the canalization of the Ruhr in order to supplement the shortage of supplies of coal in the Duchy of Kleve. Nothing, however, was done until 1768 when Frederick II gave permission for a Dutch financial company to transport coal down to the dock on the Rhine at Ruhrort. This dock had been developed in 1716 and its subsequent importance, generated by the coal traffic together with the rise of Duisburg, led ultimately to the present-day inland port of Duisburg-Ruhrort on the Rhine—the largest inland waterway port in Europe. At first the canalization of the Ruhr was ill-conceived for, when in 1722 coal began to be shipped downstream from Witten, the river was impeded by fixed dams at each of which the coal, and other cargoes, had to be transhipped to barges lying in the pound below. A few years later the merchants suggested building locks and, after disputes with millowners and those enjoying fishing rights on the river, these were constructed in timber. In 1837–42 the locks were reconstructed in stone and the capacity of the barges steadily increased from 30 tonnes to 150–180 tonnes. Following competition from the railways in the 1860s and 1870s, traffic had virtually ceased by 1890. However, it was in the nineteenth century that the great surge forward came in German waterway construction, accompanied by the use of a more PART THREE: TRANSPORT 496 sophisticated technology which has continued to the present day. This was presaged by the creation of a navigation on the Ems in 183 5 as the Haneken Canal and on the Lippe in 1840 from the Rhine to Lippstadt, and each of these canals led to the building of larger canals to serve the Westphalian industrial development. Towards the end of the nineteenth century authorization was given for the Nord-Ostsee Canal, or Kiel Canal, linking the Baltic at Kiel with the North Sea at Brunsbüttel. This is a major ship canal for large sea-going vessels and designed to eliminate the long haul round the north of Denmark. Work started in 1887 and the canal was opened in 1895. Ships at that time still carried tall masts, so the bridges were necessarily at a high level which caused structural design problems, as the terrain through which the canal passes is generally flat. The most interesting construction was the transporter bridge at Rendsburg which, uniquely among such bridges, also carries a main railway line over the upper girders. It also remains one of the very few transporter bridges still in use. At present the only alternative to the high bridges are the vehicle ferries which have to cross through the very high density of canal traffic. Since opening the canal has been widened and deepened and such work is still continuing. The present width is being increased from just over loom (328ft) to 160m (525ft) over its whole length of 99m (61.5 miles). In 1886 the 269km (167 miles) Dortmund-Ems Canal was authorized to link the Ruhr industrial area with Emden and the North Sea. The canal was completed in 1899 and it, too, contained technical innovations. It was promoted to provide an all-German waterway for the Ruhr basin traffic, thus avoiding the Rhine passage through the Netherlands. The northern end near Emden incorporated the earlier Haneken Canal whose capacity was improved. At the southern end Dortmund is situated at a higher level than the main line of the canal. There is a scarp at Henrichenburg about I5km (9.3 miles) west of Dortmund with a difference in level of 13.5m (44.3ft). With the success of the Anderton and Fontinettes lifts in England and France in mind, the authorities decided to install a lift but on a different principle. Construction was by Haniel and Lueg of Dusseldorf and started in 1894. The method of operation consisted of mounting the tank on five floats known as schwimmers positioned in wells. The wells were 9.2m (30.2ft) in diameter and 30m (98.4ft) deep and were axially in line below the tank. The floats were 8.3m (27.2ft) diameter and 12m (39.4ft) high. The tank, 70m (229.7ft) long and 8.6m (28.2ft) wide, with the floats comprised a single unit whose rise and fall was constrained by vertical iron guides in the superstructure. The whole system is very carefully balanced so that if excess pressure is applied, by increasing the volume of water in the tank, the system will sink and if the pressure is decreased it will rise. It should be emphasized that the schwimmer is a true float and not a piston. As traffic increased it was decided to supplement the lift with a shaft lock which would also act as INLAND WATERWAYS 497 reserve in case of lift failure. The shaft lock was built between 1908 and 1917, completion being delayed by the First World War. Because the upper pound to Dortmund has no major feeder, water has to be pumped back from the lower pound to compensate for that passing through the lock, and in order to minimize the loss of water ten side ponds were constructed, five on each side on five different levels, into which water from the lock can be directed during emptying and the water used again to fill the lock. Meanwhile, the canal below the Henrichenburg lift was linked to the Rhine at Duisburg-Ruhrort by the Rhine-Herne Canal in 1914 and in the same year the improved navigation, the Wessel-Datteln Canal, was opened on the line of the old Lippe Navigation. Thus two important links were completed between the Rhine, the industrial area north of the Ruhr and the North Sea. Further north an east-west link between the Rhine and the Elbe was proposed in the late nineteenth century but authorization for construction, including an intermediate connection at Minden with the Weser, was not given until 1905. The plan included a lock-free length of 211km (131 miles). By 1916 the waterway, the Mittelland Canal, was open to Hanover but it did not reach the Elbe until 1938. Three major engineering projects were successfully undertaken on this canal. At Minden a masonry aqueduct 375m (1230.3ft) long crosses the Weser valley and at the western end of the aqueduct is a shaft lock which, uniquely, has enclosed side ponds and connects the canal and the river. There are also two locks at the eastern end of the aqueduct linking the two waterways. The third major work is the lift at Rothensee near Magdeburg, now in East Germany. This took several years to build and works on the same principle as the Henrichenburg lift but is balanced on two floats. It was intended as a link with the Elbe and the main line of the canal was to cross the river on another great aqueduct. Because of the Second World War and the changed political situation, with Germany divided into two states, the aqueduct was never constructed. Vessels have to descend the lift, cross the Elbe on the level and then rise by locks to the level of the Elbe-Havel Canal. Yet another east-west link was completed in the north in 1935 with the construction of the Küsten Canal between the Ems at Dörpen via Oldenburg to the river Hunte which in turn flows into the Weser at Elsfleth. This is a major waterway taking 1000 tonne craft. It also connects with smaller canals such as the Elisabeth-Fehn Canal with locks 27.6m (90.6ft) long and 54m (17.7ft) wide as against 105m (344.5ft) long and 12m (39.4ft) wide on the Küsten Canal. In the east traffic increased on the Hohenzollern Canal, formerly the Finow Canal, and now the Havel-Oder Canal in East Germany, causing delays at the four locks at Niederfinow, north-east of Berlin. In 1926 work started on replacing the locks with a single counterweighted lift and this was completed in 1934 to become the highest lift (36m) in the world at the time. It is in constant use today for traffic to and from Poland. PART THREE: TRANSPORT 498 Increased traffic on the Dortmund-Ems Canal was also giving rise to problems with the lift and shaft lock at Henrichenburg, so in 1958 construction of a new lift was started using the same principle of floats as in the original structure but supporting the tank on two instead of five. The tank was also designed to take 1350 tonne barges. This was brought into use in 1962, although the old lift continued in operation until 1970 when it was scheduled for scrap. Later it was reprieved, to be preserved as an industrial monument. Traffic still continues to be heavy and plans for another shaft lock have been proposed. Another problem affects this area. The honeycomb of mine workings has caused so much land subsidence that continuous sheet piling has to be carried out to maintain the water level in the Dortmund to Henrichenburg section; fields which were once level with the canal are now several metres below it. The problems of variable flow in the Elbe, which carried traffic from Hamburg to the Mittelland Canal at Magdeburg, together with the establishment of the political boundary between East and West Germany running to the west of the Elbe, led to the construction after the Second World War of another major waterway, the Elbe Seiten Canal, or Elbe Lateral Canal, which leaves the Elbe near Lauenburg and follows a roughly southward course parallel to the East/ West German boundary to the Mittelland Canal near Wolfsburg. Construction began on the 115km (71.5 miles) canal in 1968 and was completed in 1976. It was designed with only two changes of level—one at Scharnebeck, where boats are transferred from one level to the other by a lift with two counterweighted tanks, and the other at Uelzen by an unusual lock. The Scharnebeck lift has a difference of level of 38m (124.7ft), exceeding the Niederfinow lift, and can take a Europa barge of 1350 tonnes in a tank loom (328ft) long and 12m (39.4ft) wide. Some idea of its size can be gained from the facts that the weight of the tank and water is about 5700 tonnes and each tank is balanced by eight counterweight sets consisting of 224 laminated concrete discs each weighing approximately 26.5 tonnes. The eight sets are housed in four concrete towers. It takes three minutes to overcome the difference in level. The Uelzen lock is unusual in that most of the structure is above ground and it compasses a change in level of 23m (75–5ft). As with other deep German locks there are side ponds to lessen the amount of water passing from the upper to the lower level during each locking operation. Elaborate pumping equipment is also installed to transfer water to the upper level. Charlemagne’s vision of a trans-Europe canal linking the North and Black Seas was revived by Ludwig I, King of Bavaria, when he ordered a survey in 1828. In 1836 work started on a link between Bamberg on a tributary of the Main and Kelheim on the Danube and was completed in 1845. Unfortunately it was of limited capacity and the rivers at each end, though nominally navigable, were often dangerous, but it proved the feasibility of the link. In INLAND WATERWAYS 499 1921 the idea was again revived and two different lines were proposed, the Rhine-Main-Danube and the Rhine-Neckar-Danube (the Neckar Navigation had already been greatly improved). The Rhine-Main-Danube was favoured and became one of the great canal projects of the world. On completion, after many vicissitudes both political and financial, it will provide a 3500km (2175 miles) long unbroken waterway across Europe. The Main was canalized for 292km (181.4 miles) from Aschaffenburg to Bamberg in 1962, following which a new canal section to Nuremberg of 70km (43.5 miles) was opened on 23 September 1972. There will be a 100km (62.1 miles) link between Nuremberg and Kelheim and the Danube has been improved between Kelheim and Regensberg. Barrages have been built above and below Passau at the Kachlet dam and the Jochenstein dam. There will be 16 locks between Bamberg and Kelheim, eleven rising from the Main to the summit level and five falling to the Danube. On the river sections of the canal the opportunity has been taken of building hydro-electric power stations adjacent to the locks to help to pay for the canal construction costs. THE RHINE Navigation on the Rhine has been undertaken from time immemorial and over the centuries its relentless flow has been largely tamed and vessels have been designed to thrust themselves upstream against the powerful current. The iniquitous toll system levied by the riparian owners has been abolished, allowing a greater freedom of navigation and thus assisting trade. Above its complicated deltaic system (see p. 490) in its middle reaches the Rhine has benefited from the trade brought to it by the Ruhr, Moselle, Neckar and Main, as well as by the various canals which have been connected to it. Its potential as a through route has already been mentioned in connection with the Rhine-Main-Danube Canal (see p. 498), but it was also anticipated on a different line in the seventeenth century. Then the Dutch traders wished to reach their eastern markets without being hampered by the Spanish navy, the Dunkirk corsairs and the Algerian pirates round Gibraltar. The natural Rhine- Rhône links were in the hands of Spain or its allies, so in 1635 a plan was made to reach the Rhône by a navigation through friendly Switzerland. The proposal was to follow the Rhine above Basle and then by the Aare from Koblenz near Waldshut through Olten and Solothurn, then through the Bielersee and by what is now the Zihl Canal to Lake Neuchâtel. A canal would then be built from Yverdon to near Morges on Lake Leman (Geneva) and so to the Rhône. The Canal d’Entreroches between Yverdon and Lake Leman was started in 1638. It reached Entreroches in 1640, a distance of 17km (10.6 miles). A further 8km (5 miles) was built to Cossonay, opened in 1648, but it never reached Morges. It had crossed the summit level and if it had been PART THREE: TRANSPORT 500 completed would have been the second summit level canal in Europe, instead of the Canal de Briare (see p. 483). It was improved and enlarged in 1775 but later abandoned. In modern times the use of the Rhine’s current for hydro-electric power generation has enabled substantial locks to be built which permit pushtows to reach the ports of Strasbourg and Basle. The first vessel direct from Britain to Basle arrived in 1936. The Swiss Rhine fleet consists of 484 vessels and the tonnage passing through the port of Basle in 1981 was 83 million tonnes. The navigable Rhine continues for 14km (8.7 miles) above Basle to Rheinfelden, a section which includes a new lock built by the Swiss at Birsfelden. ITALY In the Leonardo da Vinci Museum of Science and Technology in Milan there is a display of enlargements of Leonardo’s navigation drawings with models constructed according to those drawings. This is one indication of the early interest in inland navigation in Italy; another is that in Milan itself there is a lock gate incorporating a vertically pivoted paddle door of the kind designed by Leonardo. For here in Milan was one of Europe’s early canals. A watercourse for supply and irrigation had been built at the end of the twelfth century from the River Ticino a little below its exit from Lake Maggiore, and in 1269 it was enlarged and made navigable. It was then known as the Naviglio Grande and was used to convey marble for the erection of Milan Cathedral. Where it entered Milan a lock was built to allow the boats to gain access to the city moat. This lock was the Conca di Viarenna, the lock chamber of which has been retained as a historic monument dating back to the end of the fourteenth century. Some 50 years later another canal parallel to the Ticino was built from the Naviglio Grande through Bereguardo to Pavia, about 6km (3.7 miles) above the junction of the Ticino and the Po. Soon afterwards the Martesana Canal was built to link the Adda at Trezzo sull’Adda with Milan. The Po is the most important and the greatest river in Italy. It rises to the west of Turin but does not become navigable as a continuous waterway until some 75km (46.6 miles) below Turin and then only for small craft. However, in the lower reaches south of Venice a complicated system of waterways developed in the nineteenth and twentieth centuries linking the Po and the Venetian lagoon near Chioggia. The greatest development in northern Italy has taken place in the years since the Second World War. The Po has been improved so as to take 1350 tonne barges and pushtows consisting of a pusher and one barge. A new inland port has been constructed at Cremona and a new canal of 63km (39.1 miles) is being excavated from there to Milan, although financial restrictions have delayed completion. The Po divides at INLAND WATERWAYS 501 Pontelagoscuro, the southern branch running past Ferrara to Porto Garibaldi while the northern branch on its way to the Adriatic has a canal leaving from its north bank at Volta Grimana leading to the Venetian lagoon. This is the Po- Brondolo Canal and en route it crosses the Pontelongo Canal running to the west. Another major 1350 tonne canal, the Fissero-Tartaro-Canalbianco Canal, will bypass part of the lower Po and link the river Mincio with the Po- Brondolo Canal. A third 1350 tonne canal to Padua will run roughly parallel with the old Brenta Canal. GREECE One of the earliest canals ever conceived was one to provide a waterway across the Isthmus of Corinth between the Aegean and Ionian Seas. Both Greek and Roman leaders were mindful of the glory that would follow the creation of the Corinth Canal, but it was only Nero who attempted the operation. There had been, and indeed it continued after Nero’s efforts, a plan by which ships could be taken across the Isthmus in wheeled cradles running in grooves cut in the rock, so forming a guided trackway. Nero died before the work was completed. Several centuries passed before the work was restarted, initially under the persuasion of Colonal Istvan Türr who obtained a concession from the Greek king in 1882. The company went bankrupt in 1889 and construction was then taken over by a Greek company which completed the cutting in 1893. Much of the work was excavation through solid rock to a depth of 300 to 450m (984 to 1476ft). The canal, slightly more than 6km (3.7 miles) long, obviated a sea passage of some 320km (199 miles) round the south of Greece. It was closed by the Germans in 1944, restored and reopened after the war, and damaged again in an earthquake in 1953, since when it has been reopened. SWEDEN Belief in the feasibility of a navigation across Sweden from the Kattegat to the Baltic, to avoid the long haul round southern Sweden and to give security from attack by enemy forces, dates back many centuries. Although vessels had regularly used the Göta river their passage was impeded by the falls at Lilla Edet and more so by the falls and escarpment at Trollhättan. The first Swedish lock was built at Lilla Edet in 1607; although it was burnt in 1611 it was subsequently reinstated. At the same time a new line, the Karls Grav, was started from Vänersborg on Lake Vänern through Vassbotton to join the Göta river above the Trollhätten falls, but it was not completed until 1752. It had one lock at Brinkebergskulle. This remains Sweden’s oldest canal. Meanwhile, in 1718, Christopher Polhem, the famous Swedish engineer, was commissioned . William I of the Netherlands. He recognized the importance of water transport and one proposal of significance was to link the Meuse and the Moselle so that the long, tedious journey via the Rhine. balanced on two floats. It was intended as a link with the Elbe and the main line of the canal was to cross the river on another great aqueduct. Because of the Second World War and the changed. of the domains of the Elector of Brandendurg, persuaded the Elector to allow the canalization of the Ruhr in order to supplement the shortage of supplies of coal in the Duchy of Kleve. Nothing,