1. Trang chủ
  2. » Giáo án - Bài giảng

Thi thử đại học năm 2010

1 72 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 99 KB

Nội dung

ĐỀ THI THỬ ĐẠI HỌC 2010 A. PHẦN DÀNH CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số ( ) 4 2 4 1 2 1y x m x m= − − + − có đồ thị ( ) m C a) Khảo sát sự biến thiên và vẽ đồ thị ( ) C của hàm số khi 3 2 m = . b) Xác định tham số m để hàm số có 3 cực trị tạo thành 3 đỉnh của một tam giác đều. Câu II (2 điểm) a) Giải phương trình ( ) ( ) ( ) 1 1 2 1tan x sin x tan x .− + = + b) Giải hệ phương trình trên tập số thực: ( ) 2 4 3 2 2 5 1 9 x xy y x x y x y xy y  + + =   + + + + + =   Câu III (1 điểm) Tính tích phân sau: ( ) 2 3 2 1 2 1 t I dt t t − = + ∫ Câu IV (1 điểm) Cho hình lập phương 1 1 1 1 ABCD.A B C D có độ dài cạnh bằng a. Trên các cạnh AB và CD lấy lần lượt các điểm M, N sao cho .BM CN x = = Xác định ví trí điểm M sao cho khoảng cách giữa hai dường thẳng 1 A C và MN bằng 3 a . Câu V (1 điểm) Cho x, y là các số thực thoả mãn 2 2 2 4 1x xy y .+ + = Tìm giá trị nhỏ nhất, lớn nhất của biểu thức: 3 3 8 7M x y xy= + + . B. PHẦN DÀNH CHO TỪNG LOẠI THÍ SINH Dành cho thí sinh thi theo chương trình chuẩn Câu VI.a (2 điểm) a) Trong hệ tọa độ Oxy, cho hình vuông ABCD biết điểm ( ) 2;3A − và phương trình đường thẳng ( ) : 5 4 0BD x y− + = . Tìm tọa độ các đỉnh còn lại của hình vuông. b) Trong không gian Oxyz cho điểm ( ) 3; 1;2A − , đường thẳng ( ) 1 2 1 : 2 1 3 x y z d + − − = = − , và mặt phẳng ( ) : 2 2 0P x y z− + − = . Viết phương trình đường thẳng ( ) d ′ đi qua A, song song với ( ) mp P và vuông góc với đường thẳng ( ) d . Câu VII.a (1 điểm) Giải phương trình sau trên tập số phức: ( ) ( ) 2 2 2 3 1 7 1 0z z z z− + + − + = Dành cho thí sinh thi theo chương trình nâng cao Câu VI.b (2 điểm) a) Viết phương trình đường tròn ( ) C có tâm I thuộc ( ) :3 2 2 0x y∆ + − = và tiếp xúc với hai đường thẳng ( ) 1 : 5 0d x y+ + = và ( ) 2 : 7 2 0d x y− + = b) Viết phương trình mặt phẳng ( ) α đi qua 2 điểm ( ) 0;0;1M ; ( ) 0;2;0N và tạo với mặt phẳng ( ) : 1 0x y z β + + − = một góc 30 o . Câu VII.b (1 điểm) Chứng minh hệ thức sau: ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 0 1 2 2010 2011 2011 2011 2011 2011 2011 0C C C C C− + − + − = LVT 3/2010 . ĐỀ THI THỬ ĐẠI HỌC 2010 A. PHẦN DÀNH CHO TẤT CẢ THÍ SINH Câu I (2 điểm) Cho hàm số ( ) 4 2 4 1 2 1y x m x m= − − + − có đồ thị ( ) m C a) Khảo sát sự biến thi n và vẽ đồ thị. điểm) Chứng minh hệ thức sau: ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 0 1 2 2010 2011 2011 2011 2011 2011 2011 0C C C C C− + − + − = LVT 3 /2010 . phương trình sau trên tập số phức: ( ) ( ) 2 2 2 3 1 7 1 0z z z z− + + − + = Dành cho thí sinh thi theo chương trình nâng cao Câu VI.b (2 điểm) a) Viết phương trình đường tròn ( ) C có tâm

Ngày đăng: 03/07/2014, 15:00

w