Chương 9: Ứng dụng phương pháp phần tử hữu hạn trong thực tế Với sự hỗ trợ của máy tính điện tử, phương pháp phần t ử hữu hạn đang được sử dụng rộng rãi và có hiệu quả trong nhi ều lĩnh vực như lí thuyết đàn hồi và dẻo, cơ học chất lỏng, cơ học vật rắn, cơ học thiên thể, khí tượng thuỷ văn, vv… Phương pháp Phần tử hữu hạn thường được dùng trong các bài toán Cơ học (cơ học kết cấu, cơ học môi trường liên t ục) để xác định trường ứng suất và biến dạng của vật thể. Ngoài ra, phương pháp phầ n tử hữu hạn cũng được dùng trong vật lý học để giải các phương trình sóng, như trong vật lý plasma, các bài toán về truyền nhiệt, động lực học chất lỏng, trường điện từ 2.5 So sánh PPPTHH với phương pháp sai phân hữu hạn (PPSPHH) Phương pháp sai phân hữu hạn là phương pháp chỉ áp dụng cho hình chữ nhật có mối quan hệ đơn giản, dùng để giải các phương trình vi phân từng phần. Nó có nhiều đặc điểm tương tự phần tử hữu hạn, có nhiều trường hợp nó là t ập con của phương pháp phần tử hữu hạn. Sự khác nhau giữa PPPTHH và PPSPHH là: Điểm đặc trưng nhất của PPPTHH là nó có khả năng áp dụng cho những bài toán hình học và những bài toán biên ph ức tạp với mối quan hệ rời rạc. Trong khi đó PPSPHH về căn bản chỉ áp dụng được trong dạng hình chữ nhật với mối quan hệ đơn giản, việc vận dụng kiến thức hình học trong PPPTHH là đơn giản về lý thuyết. Điểm đặc trưng của phương pháp sai phân hữu hạn là có thể dễ dàng thực hiện được. Trong một vài trường hợp, PPSPHH có thể xem như là một tập con của PPPTHH xấp xỉ. Việc lựa chọn hàm cơ sở là hàm không đổi từng phần hoặc là hàm delta Dirac. Trong c ả hai phương pháp xấp xỉ, việc xấp xỉ được tiến hành trên toàn miền, nhưng miền đó không cần liên tục. Như một sự lựa chọn, nó có thể xác định một h àm trên một miền rời rạc, với kết quả là toán tử vi phân liên tục không sinh ra chiều dài hơn, tuy nhiên việc xấp xỉ này không phải là PPPTHH. Có những lập luận để lưu ý đến cơ sở toán học của việc xấp xỉ phần tử hữu hạn trở lên đúng đắn hơn, ví dụ: bởi vì trong PPSPHH đặc điểm của việc xấp xỉ những điểm lưới còn hạn chế. Kết quả của việc xấp xỉ bằng PPPTHH thường chính xác hơn PPSPHH, nhưng điều n ày còn phụ thuộc vào nhiều vấn đề khác và một số trường hợp đã cho kết quả trái ngược. Nói chung, PPPTHH là một phương pháp thích hợp để phân tích các bài toán về kết cấu (giải các bài toán về biến dạng và ứng suất của vật thể dạng khối hoặc động lực học kết cấu), trong khi đó phương pháp tính trong động lực học chất lỏng có khuynh hướng sử dụng PPSPHH hoặc những phương pháp khác (như phương pháp khối lượng hữu hạn). Nh ững bài toán của động lực học chất lỏng thường yêu cầu phải rời rạc hóa bài toán thành một số lượng lớn những “ô vuông” ho ặc những điểm lưới (hàng triệu hoặc hơn), vì vậy mà nó đòi hỏi cách giải phải đơn giản hơn để xấp xỉ các “ô vuông”. Điều này đặc biệt đúng cho các b ài toán về dòng chảy ngoài, giống như dòng không khí bao quanh xe hơi hoặc máy bay, hoặc việc mô phỏng thời tiết ở một vùng rộng lớn. Có rất nhiều bộ phần mềm về phương pháp phần tử hữu hạn, một số miễn phí và một số được bán. . hồi và dẻo, cơ học chất lỏng, cơ học vật rắn, cơ học thiên thể, khí tượng thuỷ văn, vv… Phương pháp Phần tử hữu hạn thường được dùng trong các bài toán Cơ học (cơ học kết cấu, cơ học môi trường. Chương 9: Ứng dụng phương pháp phần tử hữu hạn trong thực tế Với sự hỗ trợ của máy tính điện tử, phương pháp phần t ử hữu hạn đang được sử dụng rộng rãi và có hiệu quả trong nhi ều. tạp với mối quan hệ rời rạc. Trong khi đó PPSPHH về căn bản chỉ áp dụng được trong dạng hình chữ nhật với mối quan hệ đơn giản, việc vận dụng kiến thức hình học trong PPPTHH là đơn giản về